Applications of the Derivatives to the variations of functions ［use one full page per function to answer．See model on next page］．

For each of the following functions ：
1．Give the set of definition，D_{f} ，in the form of intervals（open or closed）．
2．Calculate the Derivative by using the general formulas．
3．Solve the equation $f^{\prime}(x)=0$ ．
4．Study the sign of the derivative on the intervals of D_{f} ．
5．Chart the sign of $f^{\prime}(x)$ on D_{f} and draw the variations of f accordingly．
6．Complete the chart with the limits of the function at every end of $D_{f .}$ ．
7．Find the values of maximum and minimum if any（show value in chart）．
8．Find the coordinates of the interception with the axes (Ox) and Oy ）
9．Find the equation of each asymptote parallel to the axes or oblique．
10．Sketch the curve $\left(\mathrm{C}_{\mathrm{f}}\right)$ of the function very carefully with its asymptotes．
You may check your answers on a computer or a graphic calculator，but you must draw the curve yourself．

$$
\begin{aligned}
& f_{7}(x)=\frac{2 x^{3}-x^{2}+2}{(2 x-3)^{2}} \\
& f_{8}(x)=x+1+\frac{2}{x-1} \\
& f_{9}(x)=\frac{2 x}{x^{2}+2 x+1} \\
& f_{10}(x)=\frac{2 x^{2}+4 x-1}{x-2} \\
& f_{11}(x)=|x|+1+\frac{2}{x-1} \\
& f_{12}(x)=\frac{|x|}{\sqrt{x^{2}-4}}
\end{aligned}
$$

北京景山学校 Name： \square
\square
Mathematics－Calculus＋＋．－Senior 2 －Assignment \＃ $5 \rightarrow \boldsymbol{\rightarrow} \boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ Nov． 3 jiguanglaohi＠gmail．com－New website ：beijingshanmaths．org

$$
f(x)=
$$

1．Set of definition ：$D_{f}=$
2．Derivative $\mathrm{f}^{\prime}(x)=$
3．Zeroes and Sign of the derivative ：
4．Equation of each asymptote ：
5．Chart：

x	$-\infty$	$+\infty$
Sign $\left[f^{\prime}(x)\right]$		
Variations		
and limits of f		

