Model study of a function with absolute value and radicals with singular points

Reminders：$\quad 1^{\circ}$ ）Neither the Square Root function or the Absolute value function has a derivative in 0 ． Hence a function including an absolute value and／or a Square Root cannot have a＂regular＂ derivative where the expression under them has a zero．
2° ）If a function includes an expression with an Absolute Value，it must be separated in two different functions before applying the derivatives formulas．
3° ）On a point where the derivative formulas do not apply，we must study directly the limits of the rate of growth at that point，separately on the right and on the left hand side．
4° ）If the right and left limits are different

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=\alpha \quad \& \quad \lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=\beta \quad \& \quad \alpha \neq \beta
$$

then the point $(a ; f(a))$ is an angular point ：there are two half tangents． $\mathrm{f}^{\prime}(\mathrm{a})$ does not exist．
5° ）If the above limits are $+\infty$ or $-\infty$ ，then there is no derivative but there is a vertical tangent line on that point．The position of the curve on each side of the vertical tangent line depends on the sign of the limit．

$$
f(x)=x \sqrt{\left|\frac{1-x}{1+x}\right|}
$$

1．Set of definition ：$\left.D_{f}=\mathbb{R} \backslash\{-1\}=\right]-\infty ;-1[\bigcup]-1 ;+\infty[$
2．Limits： $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} x= \pm \infty \quad \because \quad \lim _{x \rightarrow \pm \infty} \sqrt{\left.\frac{1-x}{1+x} \right\rvert\,}=\sqrt{-1 \mid}=1$ and $\lim _{x \rightarrow-1} f(x)=-\infty \quad \because \quad \lim _{x \rightarrow-1} \sqrt{\left|\frac{1-x}{1+x}\right|}=+\infty$
3．Asymptotes：we have 4 infinite branches，with one vertical asymptote $x=-1$ ．To find the oblique asymptotes we must find $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=a$ ，then $\lim _{x \rightarrow \infty}[f(x)-a x]=b$ ．
In this case we find $a=+1$（from the previous limits of the radical），and we have

$$
\lim _{x \rightarrow \infty}[f(x)-x]=\lim _{x \rightarrow \infty} x\left[\sqrt{\left|\frac{x-1}{1+x}\right|}-1\right] \rightarrow \underline{\text { undecided limit }} \infty \times 0
$$

To get rid of this undetermined form we must transform the expression by using it＇s conjugate and separating it in two expressions to eliminate the absolute value．Hence，for $x>1$ we get ：

$$
\lim _{x \rightarrow+\infty}[f(x)-x]=\lim _{x \rightarrow+\infty} x\left[\sqrt{\frac{x-1}{1+x}}-1\right]=\lim _{x \rightarrow+\infty} x \frac{\frac{x-1}{1+x}-1}{\sqrt{\frac{x-1}{1+x}}+1}=\lim _{x \rightarrow+\infty} \frac{-2 x}{(x+1)\left[\sqrt{\frac{x-1}{1+x}}+1\right]}=\lim _{x \rightarrow+\infty} \frac{-2 x}{(x+1)[2]}=\lim _{x \rightarrow+\infty} \frac{-2 x}{2 x}=-1
$$

which proves that $y=x-1$ is the equation of the asymptote for $x \rightarrow+\infty$ ．
By a similar transformation we would get also $\lim _{x \rightarrow-\infty}[f(x)-x]=-1$ ．Therefore $y=x-1$ is also the equation of the asymptote for $x \rightarrow-\infty$ ．
In this case the position of the curve with respect of this asymptote is the sign of the difference between $f(x)$ and（ $x-1$ ）．This would drive us to longer calculations and we will assume that this difference is positive when $x>1$ and negative when $x<-1$ ．

4．Derivative ：according to the above reminders we must begin by separating the expression of $f(x)$ in two different functions：let $f_{1}(x)=x \sqrt{\frac{x-1}{1+x}}$ for $x>1$ or $x<-1$ ；and $f_{2}(x)=x \sqrt{\frac{1-x}{1+x}}$ for $-1<x<1$ ．
Neither one of these two functions has a derivative at $x=1$（because $\sqrt{ } x$ is not derivable in 0）．
We find that for $x>1$ or $x<-1, f_{1}^{\prime}(x)=\frac{x^{2}+x-1}{\sqrt{(x-1)(x+1)^{3}}}$ for $-1<x<1 \quad f_{2}^{\prime}(x)=\frac{-x^{2}-x+1}{\sqrt{(x-1)(x+1)^{3}}}$

北京景山学校 beijingshanmaths．org Mathematics－Calculus＋＋．－Senior 2 jiguanglaoshi＠gmail．com

ANSWERS／Assignment \＃ 6 －Nov． 24 p． $2 / 2$
In both cases the Sign of the derivative is the sign of its numerator $\pm\left(x^{2}+x-1\right)$ of which the zeroes are $(-1+\sqrt{ } 5) / 2 \approx 0.6$ and $(-1-\sqrt{ } 5) / 2 \approx-1.6$ ．Hence we can chart the sign of the derivatives of f_{1} and f_{2} to get the variations of faccordingly ：
5．Study of the Singular point（1；0）： $\lim _{x \rightarrow 1^{+}} \frac{f_{1}(x)-f_{1}(1)}{x-1}=\lim _{x \rightarrow+^{+}} \frac{x \sqrt{\frac{x-1}{1+x}}}{x-1} \rightarrow$ undecided form $\frac{0}{0}$ ．
To get rid of the undetermined form we must transform the expression by to eliminating the＂trouble maker＂quantity（ $x-1$ ）$. . . \lim _{x \rightarrow 1^{+}} \frac{f_{1}(x)-f_{1}(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x \sqrt{\frac{x-1}{1+x}}}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x \frac{x-1}{1+x}}{(x-1) \sqrt{\frac{x-1}{1+x}}}=\lim _{x \rightarrow+^{+}} \frac{x}{\sqrt{x^{2}-1}}=+\infty$
In the same fashion we would find that $\lim _{x \rightarrow 1^{-}} \frac{f_{2}(x)-f_{2}(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x \sqrt{\frac{1-x}{1+x}}}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x \frac{1-x}{1+x}}{(x-1) \sqrt{\frac{1-x}{1+x}}}=\lim _{x \rightarrow 1^{-}} \frac{-x}{\sqrt{x^{2}-1}}=-\infty$
That is to say that the curve is having a vertical tangent on（1；0）（鸟 type）．
6．Chart of the variations of f ：

x	－∞	－1．6		－1	0		0.6		1			$+\infty$
$\operatorname{Sign}\left[f_{1}{ }^{\prime}(x)\right]$	$+\quad 0$											
$\operatorname{Sign}\left[f_{2}{ }^{\prime}(x)\right]$												
Sign［ $\left.f^{\prime}(x)\right]$		0	－	11	＋		0	－	$-\infty\| \|+\infty$	＋		
$\begin{aligned} & \text { Variations } \\ & \text { and limits of } f \end{aligned}$	－-	$7 \mathrm{M}_{1}$	$\searrow-\infty$	－｜｜$-\infty$		π	M_{2}	y	0	7	$+\infty$	

7．Curve representing the graph off ：（the graph is the set of ordered pairs $(x ; y=f(x)$ ）

