Model study of a function with absolute value and radicals with axial symmetry．

Reminders：$\quad 1^{\circ}$ ）A＂vertical＂line $x=a$ is an axis of symmetry for the graph of a function f if and only if $f(a+X)=f(a-X)$ for any X such that $a \pm X$ belongs to the set of definition of f ．
2° ）A point $I(a ; b)$ is a center of symmetry for the graph of the function f if and only if ： $(a+X)+f(a-X)=2 b$ ．
3° ）Neither the Square Root function or the Absolute value function has a derivative in 0 ． Hence a function including an absolute value and／or a Square Root cannot have a＂regular＂ derivative where the expression under them has a zero．
4° ）If a function includes an expression with an Absolute Value，it must be separated in two different functions before applying the derivatives formulas．

$$
f(x)=\frac{x^{2}+4 x}{\sqrt{\left|x^{2}+4 x+1\right|}}
$$

1．Set of definition ：$\left.D_{f}=\mathbb{R} \backslash\left\{x / x^{2}+4 x+1=0\right\}=\right]-\infty ;-2-\sqrt{3}[\bigcup]-2-\sqrt{3} ;-2+\sqrt{3}[\bigcup]-2+\sqrt{3} ;+\infty[$
2.

3．Asymptotes：we have 4 infinite branches，with two vertical asymptotes $x=-2-\sqrt{ } 3$ and $x=-2+\sqrt{ } 3$

$$
\text { To find the oblique asymptotes we must find } \lim _{x \rightarrow \infty} \frac{f(x)}{x}=a \text {, then } \lim _{x \rightarrow \infty}[f(x)-a x]=b \text {. }
$$

In this case we have $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x}{|x|}$ so that $a=+1$ when $x \rightarrow+\infty$ ；and $a=-1$ when $x \rightarrow-\infty$

$$
\left.\begin{array}{rl}
\lim _{x \rightarrow+\infty}[f(x)-x]= & \lim _{x \rightarrow+\infty} \frac{\left(x^{2}+4 x\right)-x \sqrt{x^{2}+4 x+1}}{\sqrt{x^{2}+4 x+1}}=\lim _{x \rightarrow+\infty} \frac{4 x^{3}+15 x^{2}}{\sqrt{x^{2}+4 x+1}\left[\left(x^{2}+4 x\right)+x \sqrt{x^{2}+4 x+1}\right]} \\
& \left.=\lim _{x \rightarrow+\infty} \frac{4 x^{3}\left(1+\frac{15}{4 x}\right)}{x^{3} \sqrt{1+\frac{4}{x}+\frac{1}{x^{2}}}\left[\left(1+\frac{4}{x}\right)+\sqrt{1+\frac{4}{x}+\frac{1}{x^{2}}}\right.}\right]
\end{array}=\lim _{x \rightarrow+\infty} \frac{4 x^{3}}{2 x^{3}}=2\right)
$$

which proves that $y=x+2$ is the equation of the asymptote for $x \rightarrow+\infty$ ．
In a similar way we could find that $\lim _{x \rightarrow-\infty}[f(x)+x]=-2$ and $y=-x-2$ is the equation of the asymptote for $x \rightarrow-\infty$ ．In this case the position of the curve with respect of these asymptotes is the sign of the difference between $f(x)$ and $|x+2|$ ．This would drive us to longer calculations and we will assume that this difference is always negative，which proves that the curve will always be under the oblique asymptotes．
4．Derivative ：according to the above reminders we must begin by separating the expression of $f(x)$ in two different functions：let $f_{1}(x)=\frac{x^{2}+4 x}{\sqrt{x^{2}+4 x+1}}$ for $x<-2-\sqrt{ } 3$ or $x>-2+\sqrt{ } 3$ ．

$$
\text { and } f_{2}(x)=\frac{x^{2}+4 x}{\sqrt{-x^{2}-4 x-1}} \text { for }-2-\sqrt{ } 3<x<-2+\sqrt{ } 3
$$

Neither one of these two functions has a derivative at $x=-2 \pm \sqrt{ } 3$（because $\sqrt{ } x$ is not derivable in 0 ）．
We find that $f_{1}^{\prime}(x)=\frac{(x+2)\left(x^{2}+4 x+2\right)}{\left(x^{2}+4 x+1\right) \sqrt{x^{2}+4 x+1}}$ for $x<-2-\sqrt{ } 3$ or $x>-2+\sqrt{ } 3$

$$
\text { and } f_{2}^{\prime}(x)=\frac{(x+2)\left(x^{2}+4 x+2\right)}{\left(x^{2}+4 x+1\right) \sqrt{-x^{2}-4 x-1}} \text { for }-2-\sqrt{ } 3<x<-2+\sqrt{ } 3
$$

北京景山学校 beijingshanmaths．org Mathematics－Calculus＋＋．－Senior 2 jiguanglaoshi＠gmail．com ANSWERS／Assignment \＃ 6 －Nov． 24 p． $2 / 2$

In both cases the Sign of the derivative is the sign of the product $(x+2)\left(x^{2}+4 x+1\right)\left(x^{2}+4 x+2\right)$ of which the zeroes are $\{-2 ;(-2-\sqrt{ } 3) \approx-3.7 ;(-2+\sqrt{ } 3) \approx-0.3 ;(-2-\sqrt{ } 2) \approx-3.4 ;(-2+\sqrt{ } 2) \approx-0.6\}$ ．Hence we can chart the sign of the derivatives of f_{1} and f_{2} to get the variations of faccordingly ：
5．Chart of the variations off：

7．Curve representing the graph off：（the graph is the set of ordered pairs $(x ; y=f(x))$ ）

8．Symmetry ：the line $x=-2$ is an axis of symmetry because we have $f(-2+X)=f(-2-X)$ for any X ．

$$
f(-2+X)=\frac{X^{2}-4}{\sqrt{X^{2}-3}}=f(-2-X)
$$

