Definition & Construction of a Parabola (Part 1)

Let f be the function defined by : $f: x \mapsto ax^2$ (a\neq 0)

I- Algebraic properties:

1°) **Even** function: for any $x \in \mathbb{R}$, $\underline{f(-x) = f(x)}$.

$$f(-x) = f(x).$$

2°) Rate of growth *non constant*:
$$T_{[f,(x_1,x_2)]} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a(x_2 + x_1)$$

- 3°) Sign of T = Sign of a on $[0; +\infty[$, and Sign of T = Sign of (-a) on $]-\infty; 0]$
- 4°) Chart of the Variations of f:

a > 0					a < 0					
х	-∞ -1	0	1	+00	х	_00	-1	0	1	+∞
T	-	Ш	+		T		+		-	
f	a /	_ 0_	a	→ ^{+∞}	f	_ ∞ ,	a	▼ 0、	a	- 00

II- Geometric Properties:

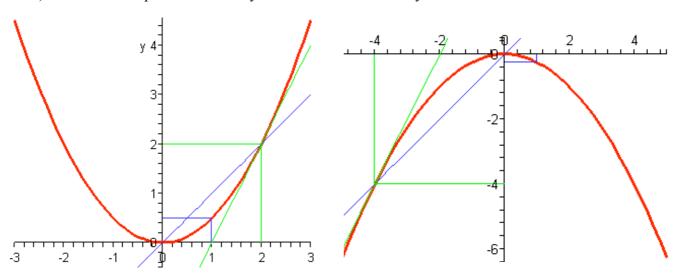
- 1°) The curve has (Oy) as an axis of symmetry. For that reason the curve is called a **Parabola**.
- 2°) The Parabola is tangent to the (Ox) Axis in O.
- 3°) The Parabola passes through the point A(1; a).
- 4°) If a > 0 the Parabola concavity is directed towars the positive y:

(as one can say the « the bowl can hold water »)

If a < 0 the Parabola concavity is directed towards the négative y:

(as one can say the « the bowl cannot hold water »)

- 5°) The Parabola intercepts the 1st bisector line (y = x) at point B(1/a; 1/a)
- 6°) On B the Parabola is tangent to the line joining B to the middle of the segment located under the tangent, which is the point of abscissa 1/2a
- 7°) By symmetry with respect to Oy we get the points A'(-1;a) and B'(-1/a; 1/a)
- 8°) If a is very small compared to the unity $(a \ll 1)$, the parabola is widely opened, inversely if a >> 1 the parabola is very narrow around the axis of symmetry.
- 9°) The parabola contains absolutely no piece of a straight line.
- 10°) The branches spread indefinitely in the direction of the Oy axis.



Jingshan School of Beijing

Second degree functions (Part 2)

Second degree functions are in the general form: $|f:x\mapsto ax^2+bx+c|$ with $a\neq 0$ This expression can take any of the following forms:

(P₁)
$$y = a x^{2}$$

(P₂) $y = a x^{2} + H$
(P₃) $y = a (x - L)^{2}$
(P₄) $y = a (x - L)^{2} + H$
(P₅) $y = a (x - x')(x - x'')$
(P₆) $y = a x^{2} + bx + c$ (trinomial)

- 1°) Transformation from (P_1) to (P_2) is a **Translation** defined by the vertical vector H_j (parallel to the (Oy) axis. (P₂) intercepts (Oy) in y = H. ($H = \#Hight \gg ; L = \#Length \gg)$
- 2°) Transformation from (P_1) to (P_3) is a **Translation** defined by the horizontal vector L. \vec{i} (parallel to the (Ox) axis)
- 3°) Transformation from (P₁) to (P₄) is a **Translation** of vector $\vec{V} = L.\vec{i} + H.\vec{j}$

The Parabola (P₄) has a vertex in O'(L;H).

Let X = x - L and Y = y - H then $Y = a X^2$ which means that (P_4) is Symmetrical whith respect of the axis defined by x = L (parallel to (Oy))

 (P_4) is drawn in the system (O'X,O'Y) just like (P_1) in the system (Ox,Oy).

4°) The Parabola (P₅) intercepts the axis (Ox) in x' and x'', its vertex is then at

S of abscissa =
$$\frac{x' + x''}{2} = \frac{b}{2a}$$
 ordinate H = $f(L)$.
5°) To build the parabola (P₆) one can either:
a. use the form (P₄) by breaking the trinomial in that « canon

a. use the form (P_{\perp}) by breaking the trinomial in that « canonic » form.

b. find the coordinates of the vertex $O'\{L=-b/2a; H=f(L)\}\$ then find the Ox and Oy intersection pts: on (Oy): (x = 0; y = c) et (Ox) solutions of the équation $ax^2 + bx + c = 0$ (if any).

Example: let (P) be the Parabola defined by $y = 1/4 (x-2)^2 + 3$ then L=2; H=3; Y = $\frac{1}{4}$ X²

