Definition and Construction of an Equilateral Hyperbola (Part 1)

I- Algebraic properties:

1°) Odd function: for any $x \in \mathbb{R}^{*}, f(-x)=-f(x)$.
2°) Rate of growth non constant: $T_{\left[f,\left(x_{1}, x_{2}\right)\right]}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{-A}{x_{1} x_{2}}$
$\left.3^{\circ}\right) \quad$ Sign of $\mathrm{T}=\operatorname{Signe}$ of $(-A)$ on $[0 ;+\infty[$ and on $]-\infty ; 0]$
4°) Variation Chart :

II- Geometric Properties :

1°) The curve representing f is symmetrical through the Origin of axes. This curve is called an Equilateral Hyperbola because of its central Symmetry and because x and y vary in reverse directions. (The word hyperbolic means something exaggerated)
2°) The Hyperbola cuts the $1^{\text {st }}$ bisector $(y=x)$ in $\mathrm{I}(\sqrt{A} ; \sqrt{A})$ if $A>0$ or $(\sqrt{-A} ;-\sqrt{-A})$ if $A<0$
3°) On I the Hyperbola is tangent to the line perpendicular to the bisector.
4°) The Hyperbola contains the point $\mathrm{J}(1 ; \mathrm{A})$ and its symmetrical point ($-1 ;-\mathrm{A}$) through O
5°) If $\mathrm{A}>0$ the $1^{\text {st }}$ bisector $(y=x)$ is an axis of symmetry. If $\mathrm{A}<$ the $2^{\text {nd }}$ bisector $(y=-x)$ is an axis of symmetry.
6°) When $|\mathrm{A}|$ is very large compared to 1 ($|\mathrm{A}| \gg 1$), The Hyperbola is very wide and away from O. Inversely if $|\mathrm{A}| \ll 1$ the Hyperbola is very narrow and close to 0 .
7°) The Hyperbola contains absolutely no segment of a straight line.
8°) The Hyperbola has two asymptotes which are the axes of coordinates (Ox) et (Oy).

Hyperbolas \& Homographic Functions (Part 2)

Homographic functions are those defined by the type : $f: x \mapsto y=\frac{a x+b}{c x+d}$ with $\boldsymbol{c} \neq \mathbf{0}$
That expression can take one or the other of the following forms :

$$
\begin{aligned}
& \left(H_{1}\right) \quad y=\frac{A}{x} \\
& \left(H_{2}\right) \quad y=\frac{A}{x}+H \\
& \left(H_{3}\right) \quad y=\frac{A}{x-L} \\
& \left(H_{4}\right) \quad y=\frac{A}{x-L}+H \\
& \left(H_{5}\right) \quad y=\frac{a x+b}{c x+d}
\end{aligned}
$$

1°) Transformation from $\left(\mathrm{H}_{1}\right)$ to $\left(\mathrm{H}_{2}\right)$ is a Translation defined by the vertical vector $\mathrm{H} \vec{j}$ (parallel to the ($\mathrm{O} y$) axis. $\left(\mathrm{H}_{2}\right)$ intercepts $(\mathrm{O} y)$ in $\mathrm{y}=\mathrm{H} .(H=$ "Hight»; $L=$ «Length»)
2°) Transformation from $\left(\mathrm{H}_{1}\right)$ to $\left(\mathrm{H}_{3}\right)$ is a Translation defined by the horizontal vector L. \vec{i} (parallel to the ($\mathrm{O} x$) axis).
3°) Transformation from $\left(\mathrm{H}_{1}\right)$ to $\left(\mathrm{H}_{4}\right)$ is a Translation of vector $\vec{V}=L \cdot \vec{i}+H . \vec{j}$
4°) The Hyperbola $\left(\mathrm{H}_{4}\right)$ has its center of symmetry in $\mathrm{O}^{\prime}(\mathrm{L} ; \mathrm{H})$.
Let $\mathbf{X}=\boldsymbol{x}-\mathbf{L}$ and $\mathbf{Y}=\boldsymbol{y}-\mathbf{H}$ then $\mathbf{Y}=\mathbf{A} / \mathbf{X}$ which means that $\left(\mathrm{H}_{4}\right)$ is Symmetrical through O^{\prime} Therefore $\left(\mathrm{H}_{4}\right)$ is drawn in the system ($\mathrm{O}^{\prime} \mathrm{X}$; $\mathrm{O}^{\prime} \mathrm{Y}$) just like $\left(\mathrm{H}_{1}\right)$ in the system $(O x, O y)$.
5°) To build the Hyperbola $\left(\mathrm{H}_{5}\right)$ one can choose between two methods :
a. Change $\left(\mathrm{H}_{5}\right)$ into $\left(\mathrm{H}_{4}\right)$ by breaking the fractions in simple elements (cf. examples).
b. Find the coordinates of the center with the formulas $O^{\prime}\left(L=\frac{-d}{c} ; H=\frac{a}{c}\right)$ then find the intersections with the two axes : (Oy) : $\left(0 ; \frac{b}{d}\right)$ and $(\mathrm{Ox})\left(\frac{-b}{a} ; 0\right)$.

