Definition and Construction of an Equilateral Hyperbola (Part 1)

Let f be the function defined by:
$$f: x \mapsto y = \frac{A}{x}$$

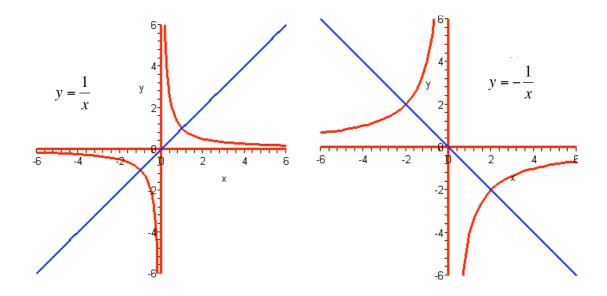
I- Algebraic properties:

- 1°) **Odd** function: for any $x \in \mathbb{R}^*$, f(-x) = -f(x).
- 2°) Rate of growth *non constant*: $T_{[f,(x_1,x_2)]} = \frac{f(x_2) f(x_1)}{x_2 x_1} = \frac{-A}{x_1 x_2}$
- 3°) Sign of T = Signe of (-A) on $[0; +\infty[$ and on $]-\infty; 0]$
- 4°) Variation Chart:

A > 0				A < 0					
X	-∞ -1	0 1	+∞	x	-∞	-1	0	1	+∞
T	-	-		T		+		+	
f	0 ⁽⁻⁾ A	+ ∞	0(+)	f	0(+)	-A	→ ∞	_A	→ 0 ⁽⁻⁾

II-Geometric Properties:

- 1°) The curve representing f is symmetrical through the Origin of axes. This curve is called an **Equilateral Hyperbola** because of its central Symmetry and because x and y vary in reverse directions. (The word hyperbolic means something exaggerated)
- 2°) The Hyperbola cuts the 1st bisector (y = x) in I $(\sqrt{A}; \sqrt{A})$ if A > 0 or $(\sqrt{-A}; -\sqrt{-A})$ if A < 0
- 3°) On I the Hyperbola is tangent to the line perpendicular to the bisector.
- 4°) The Hyperbola contains the point J(1;A) and its symmetrical point (-1;-A) through O
- 5°) If A > 0 the 1st bisector (y = x) is an axis of symmetry. If A < the 2nd bisector (y = -x) is an axis of symmetry.
- 6°) When |A| is very large compared to 1 (|A| >> 1), The Hyperbola is very wide and away from O. Inversely if |A| <<1 the Hyperbola is very narrow and close to 0.
- 7°) The Hyperbola contains absolutely no segment of a straight line.
- 8°) The Hyperbola has two *asymptotes* which are the axes of coordinates (Ox) et (Oy).



Hyperbolas & Homographic Functions (Part 2)

Homographic functions are those defined by the type: $f: x \mapsto y = \frac{ax+b}{cx+d}$ with $c \ne ax+b$

That expression can take one or the other of the following forms:

$$(H_1) \quad y = \frac{A}{x}$$

$$(H_2) \quad y = \frac{A}{x} + H$$

$$(H_3) \quad y = \frac{A}{x - L}$$

$$(H_4) \quad y = \frac{A}{x - L} + H$$

$$(H_5) \quad y = \frac{ax + b}{cx + d}$$

- 1°) Transformation from (H_1) to (H_2) is a **Translation** defined by the vertical vector H_j (parallel to the (Oy) axis. (H_2) intercepts (Oy) in y = H. (H = #Hight *); L = #Length *)
- 2°) Transformation from (H_1) to (H_3) is a **Translation** defined by the horizontal vector L. \vec{i} (parallel to the (Ox) axis).
- 3°) Transformation from (H₁) to (H₄) is a **Translation** of vector $\vec{V} = L.\vec{i} + H.\vec{j}$
- 4°) The Hyperbola (H_4) has its center of symmetry in O'(L;H). Let $\mathbf{X} = x - \mathbf{L}$ and $\mathbf{Y} = y - \mathbf{H}$ then $\mathbf{Y} = \mathbf{A}/\mathbf{X}$ which means that (H_4) is Symmetrical through O' Therefore (H_4) is drawn in the system (O'X; O'Y) just like (H_1) in the system (Ox,Oy).
- 5°) To build the Hyperbola (H₅) one can choose between two methods:
 - a. Change (H_5) into (H_4) by breaking the fractions in simple elements (cf. examples).
 - b. Find the coordinates of the center with the formulas $O'(L = \frac{-d}{c}; H = \frac{a}{c})$ then find the intersections with the two axes: (Oy): $(0; \frac{b}{d})$ and (Ox) $(\frac{-b}{a}; 0)$.

