jiguanglaoshi＠gmail．com
Jingshan School of Beijing

Mathematics－Calculus $++-11^{\text {th }}$ grade
2009／09／14－p．1／4

Project／Draft \＃ 4

［2 periods of 45＇／1h30＇／week］
Note ：requirement ：improve your understanding and knowledge of both Maths and English．

Tuesday Sept． 15	1）Elementary functions：［函数］ Examples－Equations－graphs（．ppt）－properties a）Polynomial functions ： $P: x \mapsto y=a_{n} x^{n}+a_{n-1} 1^{n-1}+\ldots+a_{1} x+a_{0}=\sum_{k=0}^{k=n} a_{k} x^{k}$ （i）Quick review on $1^{\text {st }}$ and $2^{\text {nd }}$ degree $l: x \mapsto y=a x+b$ and $T: x \mapsto y=a x^{2}+b x+c$ （ii）Examples of $3^{\text {rd }}$ and $4^{\text {th }}$ degree functions $f: x \mapsto y=a x^{3}+b x+c$ and $f: x \mapsto y=a x^{4}+b x^{2}+c$ b）Inverse and Homographic functions ： （i）Quick review on $f: x \mapsto y=\frac{A}{x}$ （ii）Extension to $f: x \mapsto y=\frac{A}{x-L}+H$ （iii）Homographic form ：$f: x \mapsto y=\frac{a x+b}{c x+d}$ c）Rational functions ：$R: x \mapsto y=\frac{a x^{2}+b x+c}{a^{\prime} x^{2}+b^{\prime} x+c^{\prime}}$ d）Irrational functions ：$r: x \mapsto y=\sqrt{\frac{a x^{2}+b x+c}{a^{\prime} x^{2}+b^{\prime} x+c^{\prime}}}$ e）Exponential \＆Logarithm：$f: x \mapsto y=a^{x}$ and $g: x \mapsto y=\log _{a}(x)$ f）Trigonometric functions ：$f: x \mapsto y=A \sin (a x+b)+B \cos (c x+d)$
Tuesday Sept． 22	2）Introduction to limits Examples／graphs／Exercises a）Polynomial functions： $\lim _{x \rightarrow \infty} P(x)$ b）Rational functions $\lim _{x \rightarrow \infty} R(x) ; \lim _{x \rightarrow \alpha} R(x) ; \lim _{x \rightarrow 0} R(x)$ c）Irrational functions $\lim _{x \rightarrow \infty} r(x) ; \lim _{x \rightarrow \alpha} r(x) ; \lim _{x \rightarrow 0} r(x)$
Tuesday Sept． 29	3）Formal Definitions of limits Examples／graphs／Exercises a）Infinite limits $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty ; \lim _{x \rightarrow \pm \infty} f(x)=a ; \lim _{x \rightarrow a} f(x)= \pm \infty$ b）Graphic interpretations ：asymptotes［渐进线］
Oct．1－8	National Holyday of the $60^{\text {th }}$ anniversary of the people＇s Republic of China

jiguanglaoshi＠gmail．com Jingshan School of Beijing

Mathematics－Calculus $++-11^{\text {th }}$ grade
2009／09／14－p．2／4

Project／Draft \＃ 4

［2 periods of 45＇／1h30＇／week］
Note ：requirement ：improve your understanding and knowledge of both Maths and English．

Tuesday Oct． 13	4）General Theorems on limits Examples／graphs／Exercises a）Sum，products，quotients，square root．［Chart of combinations］ b）Application to Rational and Irrational functions c）Undetermined cases types ：$\infty-\infty ; \frac{\infty}{\infty} ; \frac{0}{0} ; 0 \times \infty$
Tuesday Oct． 20	5）Applications of limits to determine aspects of the graph of a function Examples／graphs／Exercises a）Infinite branches b）Asymptotes parallel to one axis c）Asymptote non parallel to one axis
Tuesday Oct． 27	6）Introduction to the Derivative［导函数］in one point ： Examples／graphs／Exercises a）Formal definition［Vol．A 2－2 p．1－13－2005］ b）Illustration／graph ：Tangent in one point． c）Linear approximation of a function in one pt． d）Application to approximation in calculus
Tuesday Nov． 3	7）General Formulas of the Derivatives ： Examples／graphs／Exercises Some examples of proofs［Vol．A 2－2 p．14－19－2005］ a）Sum and product b）Power and quotient c）Square root d）Composite functions． e）Trig functions f）Exponential and Log

jiguanglaoshi@gmail.com Jingshan School of Beijing

Mathematics - Calculus $++-11^{\text {th }}$ grade
2009/09/14-p.3/4

Project / Draft \# 4

[2 periods of 45' / 1h30'/week]
Note : requirement : improve your understanding and knowledge of both Maths and English.

Tuesday Nov. 10	8) Applications of the Derivatives to the variations of a function on a given interval : [Polynomial and rational functions] a) Theorem of the sign of the derivative b) Theorem of Minima and Maxima c) Chart of the variations of a function d) Construction of the curve
Tuesday Nov. 17	9) Review : $\mathbf{2 0}$ exercises plus applications of Calculus in Physics [Max. power in an electrical circuit, and Fermat Optics] a) Calculation of the derivative b) Chart of the variations of the function c) Construction of the curve d) Special points : interception with axes e) Asymptotes f) Coordinates of Max and Min
Tuesday Nov. 27	10) Use of computers to check calculations : Exercises and practice in the computer Lab. a) Introduction to Mapple. b) Use of software to build curves of functions with asymptotes and tangents. c) Compare the graphs of a function and its derivative.
Tuesday Dec. 1	11) Introduction to Euler's Method a) Use of Excel to build the graph of a function point to point. b) Construction of the Exponential function c) Examples and practice in Computer Lab

jiguanglaoshi＠gmail．com Jingshan School of Beijing

Mathematics－Calculus $++-11^{\text {th }}$ grade
2009／09／14－p．4／4

Project／Draft \＃ 4

［2 periods of 45＇／1h30＇／week］
Note ：requirement ：improve your understanding and knowledge of both Maths and English．

Tuesday Dec． 8	12）Introduction to Primitive functions［原函数］ Examples and practice a）Use of inverse formulas from the derivatives． b）Use of formula of the composite functions．
Tuesday Dec． 15	13）Introduction of the finite integral ：$I=\int_{a}^{b} f(x) d x$ Examples and practice a）General properties of the integral b）The fundamental Theorem of Calculus c）Applications to the Area calculations．
Tuesday Dec． 22	14）Integration by parts． Examples and practice［．ppt］ a）General formula and Examples $\int_{a}^{b} u^{\prime} v=[u v]_{a}^{b}-\int_{a}^{b} v^{\prime}$ b）Applications to the calculations of an area c）Applications to the calculations of a volume
Tuesday Dec． 29	15）Application of Calculus to Physics ： a）Curve of a rocket b）Periodical movements of a spring
	16）General review on functions on computers． Examples and practice with Mapple or SketchPad a）Derivatives／Graphs／Integrals b）Sequences of functions depending on a parameter ：$y=f_{n}(x)$

