北子自己兴场				
北尔京山子仪	Name :	纪老师		Answers
Mathematics - Electiv	ve Pre-Calc.	- Senior 1 – TES	ST 1-B Nov.	2 (60 min.) - p.1/3
I – Linear Programming	: [30 pts] A	1	$2r \pm 12$	publishing company is
producing two kinds of soft	ware A and B	$f(x) = -\frac{1}{4}x^2 - x + 3$	$g(x) = \frac{2x+12}{x+4}$	on DVDs. It uses two
machines for the production	: one for the			disk burning and one
for the packaging.				
Let x be the number of DVD.	s of A type and	y be the number of l	DVDs of B type.	
The burning machine takes 3	<i>i minutes to bui</i>	rn the DVD A and \cdot	4 minutes for B,	but can work only for
24 hours and 10 minutes per	' series.			
T 1 1 . 1. 1				1 1 0 05

The packaging machine takes 5 minutes for the DVD A and 3 minutes for B, but it can work only for 25 hours in a row. Each DVD A is sold 50 Yuans and each DVD B is sold 40 Yuans.

- 1. Write the system of inequalities corresponding to this production.
- 2. Draw the lines corresponding to the production of each machine.
- 3. Shade the area corresponding to these conditions of production.
- 4. Write the equation corresponding to the total amount sold for this production.
- 5. Find the maximum number of DVD A and B which can be produced.
- 6. Draw the line of the sales corresponding to that maximum production.

• System of inequalities corresponding to the conditions of this production : $\begin{cases} 3x + 4y \le 1450\\ 5x + 3y \le 1500\\ x \ge 0; y \ge 0 \end{cases}$

- Total amount of money engaged for this production of x DVD/A and y DVD/B S = 50x + 40y
- S is maximum for the point corresponding to the vertex of the authorized domain. $x = 150 \text{ DVD/A} \& y = 250 \text{ DVD/B} \Rightarrow S = 17500 (Yuans) \text{ per series}.$

北京景山学校Name :纪老师AnswersMathematics - Elective Pre-Calc. - Senior 1 – TEST 1-B Nov.2 (60 min.) - p.2/3

II-Parabolas and Hyperbolas: [40 pts] $f(x) = \frac{1}{4}x^2 + x - 3$ $g(x) = \frac{-2x - 12}{x + 4}$

- 1. Draw carefully the graphs of the two functions in the same system of coordinates. Show the axis of symmetry of the Parabola and the asymptotes of the Hyperbola
- 2. Calculate and show the coordinates of intersections with the 0x and the 0y axes.
- 3. Solve the equation f(x) = g(x) to find the coordinates of the intersection points of the Parabola and the Hyperbola.
- 4. Shade the area of points (x;y) corresponding to the system of inequalities : $y \ge f(x) & y \le g(x)$
- Axis of Symmetry of the Parabola : x = -2; Vertex (-2; -6)
- Center of Symmetry of the Hyperbola : (-4 ; -2)
- Intersection of the Parabola with the x axis : $y = 0 \iff x = -6$ or x = 2
- Intersection of the Parabola with the y axis : $x = 0 \iff y = -3$
- Intersection of the Hyperbola with the x axis : $y = 0 \iff x = -6$
- Intersection of the Hyperbola with the y axis : $x = 0 \iff y = -3$
- Intersection of the two curves :

$$\frac{1}{4}x^{2} + x - 3 = -\frac{2x + 12}{x + 4} \Leftrightarrow \frac{1}{4}(x + 6)(x - 2)(x + 4) = -2(x + 6)$$

$$\Leftrightarrow (x + 6)[\frac{1}{4}(x - 2)(x + 4) + 2] = 0 \Leftrightarrow (x + 6)[\frac{1}{4}x^{2} + \frac{1}{2}x] = 0 \Leftrightarrow x(x + 6)(x + 2) = 0$$

$$\Leftrightarrow x = 0 (y = -3) \quad or \quad x = -2 (y = -4) \quad or \quad x = -6 (y = 0)$$

 $f_1(x) = -\frac{1}{4}x^2 + |x| + 3$; $f_2(x) = -\sqrt{(x+4)^2} - 3$; $f_3(x) = -\sqrt{-9x-9} + 3$

- $f_1(x) = f(|x|)$ with $f(x) = -\frac{1}{4}x^2 + x + 3$, because $(|x|)^2 = x^2$. Therefore the graph of f_1 is associated to a parabola
- $f_2(x) = -\sqrt{(x+4)^2} 3 = -|x+4| 3$. Therefore the graph of f_2 is associated to the opposite of the absolute value function, translated from the origin by the vector V(-3;-4).
- $f_3(x) = -\sqrt{-9x-9} + 3 = -3\sqrt{-[x-(-1)]} + 3$ Therefore the graph of f_3 is associated to the function defined by the opposite of $3\sqrt{(-x)}$ and then translated from the origin by the vector V(-1;+3).

