北京景山学校	Name :	Grade : /100
	E1 B	

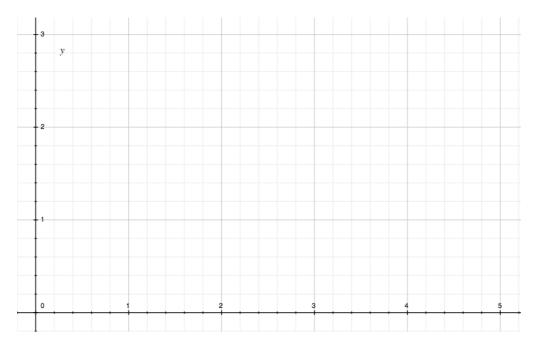
Mathematics - Elective Pre-Calc. - Senior 1 - Assignment # 9- Dec. 7 - p.1/2

Numerical Sequences (2)

Problem I – Let $u_n = 2n + 3 - \sqrt{4n^2 + 4n + 5}$

1. Calculate the first terms of (u_n) .

2. Is (u_n) increasing or decreasing or neither ?


3. Is (u_n) bounded and if yes by which values ?

4. Prove that for any n > 0 we have $|u_n - 2| \le \frac{1}{n}$.

5. What is the limit of (u_n) ?

Problem I – Let $u_{n+1} = \sqrt{6 - u_n}$ defined by $u_{n+1} = f(u_n)$ with $f(x) = \sqrt{6 - x}$ and $u_0 = 5$

- 1. Graph the function f on [0; 6[and draw the first terms of the sequence (u_n) .
- 2. Find the coordinates of the intersection of (Cf) with the first bisector (y=x)
- 3. Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (*if yes, what are the boundaries ?*)
 - iii. Does-it seem to have a limit (if yes which one is it?)?

December 14, 2009

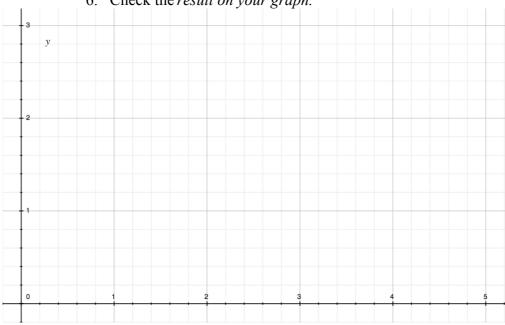
北京景山学校 Name:

Grade : /100

Mathematics - Elective Pre-Calc. - Senior 1 - Assignment # 9- Dec. 7 - p.2/2

Problem III : Let f be the function defined by $f(x) = \frac{x+6}{x+2}$ for $x \ge 0$.

Study of the sequence (v_n) defined by $v_{n+1} = f(v_n) = \frac{v_n + 6}{v_n + 2}$; $n \ge 0$ and $v_0 = 5$.


4. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (u_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y=x)Indicate from the graph whether or not the sequence is :

- i. Monotonous (if yes how) :
- ii. Bounded (if yes, what are the boundaries ?)
- iii. Does-it seem to have a limit (if yes which one is it?)?

5. Let
$$W_n = \frac{V_n - 2}{V_n + 3}$$
 for any $n > 0$.

Show that the new sequence (w_n) is a geometric sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of w_n directly in function of n.
- 3. Deduct the limit of $w_{n.}$
- 4. Find the expression of v_n in function of w_n
- 5. Find the limit of v_n
- 6. Check the result on your graph.

