\square

Numerical Sequences（2）

Problem I－Let $u_{n}=2 n+3-\sqrt{4 n^{2}+4 n+5}$
1．\quad Calculate the first terms of $\left(u_{n}\right)$ ．
2．Is $\left(u_{n}\right)$ increasing or decreasing or neither？
3．Is $\left(u_{n}\right)$ bounded and if yes by which values？
4．Prove that for any $n>0$ we have $\left|u_{n}-2\right| \leq \frac{1}{n}$ ．
5．What is the limit of $\left(u_{n}\right)$ ？

Problem I－Let $u_{n+1}=\sqrt{6-u_{n}}$ defined by $u_{n+1}=f\left(u_{n}\right)$ with $f(x)=\sqrt{6-x}$ and $u_{0}=5$
1．Graph the function f on $\left[0 ; 6\right.$［ and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$ ．
2．Find the coordinates of the intersection of（Cf）with the first bisector $(\mathrm{y}=\mathrm{x})$
3．Indicate from the graph whether or not the sequence is：
i．Monotonous（if yes how）：
ii．Bounded（if yes，what are the boundaries？）
iii．Does－it seem to have a limit（if yes which one is it？）？

\square
Mathematics－Elective Pre－Calc．－Senior 1 －Assignment \＃9－Dec． 7 －p．2／2
Problem III ：Let f be the function defined by $f(x)=\frac{x+6}{x+2}$ for $\mathrm{x} \geq 0$ ．
Study of the sequence $\left(v_{n}\right)$ defined by $v_{n+1}=f\left(v_{n}\right)=\frac{v_{n}+6}{v_{n}+2} ; \mathrm{n} \geq 0$ and $v_{0}=5$ ．
4．Graph the function f on $\left[0 ;+\infty\right.$［ and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$ ．
Find the coordinates of the intersection of（Cf）with the first bisector（ $\mathrm{y}=\mathrm{x}$ ）
Indicate from the graph whether or not the sequence is ：
i．Monotonous（if yes how）：
ii．Bounded（if yes，what are the boundaries？）
iii．Does－it seem to have a limit（if yes which one is it？）？
5．Let $w_{n}=\frac{v_{n}-2}{v_{n}+3}$ for any $n>0$ ．
Show that the new sequence $\left(w_{n}\right)$ is a geometric sequence ：
1．Find its first term and its reason．
2．Find the expression of w_{n} directly in function of n ．
3．Deduct the limit of w_{n} ．
4．Find the expression of v_{n} in function of w_{n}
5．Find the limit of v_{n}
6．Check the result on your graph．

