I-Let *f* be the function defined by $f(x) = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$.

Let f_1 , f_2 , f_3 , f_4 be the functions associated to f, defined by the following relationships :

 $f_1(x) = -f(x)$; $f_2(x) = f(-x)$; $f_3(x) = -f(-x)$, $f_4(x) = f(x-2)+1$ Draw the five parabolas P, P_1 , P_2 , P_3 , P_4 of the five functions on the same graph below.

(Chose carefully the position of the origin to be able to show the curves properly, and use 5 different colors)

Explain which geometrical transformation of (P) correspond to each of these 4 new parabolas.

 $\overline{II-Let\ h\ be\ the\ function\ defined\ by\ h(x)} = \frac{2-x}{2+x}.$

Let h_1 , h_2 , h_3 , h_4 be the functions associated to h, defined by the following relationships :

 $h_1(x) = |h(x)|$; $h_2(x) = h(|x|)$; $h_3(x) = |h(-x)|$, $h_4(x) = h(x-2)+1$ Draw the five Hyperbolas H, H_1 , H_2 , H_3 , H_4 of the five functions on the same graph below.

(Chose carefully the position of the origin to be able to show the curves properly, and use 5 different colors)

Explain which geometrical transformation of (H) correspond to each of these 4 new Hyperbolas.

