\square
\square
Mathematics－Elective Pre－Calc．－Senior 1 －Assignment \＃10－Dec． 14 －p．1／2

Numerical Sequences（3）

Problem I－The laughing cow

Suppose that the original box has a diameter of 10 cm ，and that on each box the diameter of earrings box of the laughing cow is $1 / 5$ of the previous one．
Find how many cows can be drawn until the diameter of the earrings box becomes less thsan 1 mm ．［let $d_{0}=10$ and d_{n} the diameter of the $n^{\text {th }}$ box］

Problem II－Square the squares

Suppose that the first square has a side of 10 cm and that each square has a side of $3 / 4$ of the previous one．What is the area that can be covered by the total sum of the area of the infinite sequence of these squares．

Problem III Infinite decimals

Let a be a number（digit）between 1 and 9 included．Let $\mathrm{u}_{\mathrm{n}}=a .10^{-\mathrm{n}}$ ，and $\mathrm{S}_{\mathrm{n}}=\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}+\ldots+\mathrm{u}_{\mathrm{n}}$ 1° ）Write the expression of S_{n} as a function of n and a ．
2° ）Write the number $\mathrm{N}=0.333333333 \ldots 333 \ldots$ in the previous form and prove that this number is a rational fraction to be found．
3° ）Same problem with $U=0.999999999 \ldots 999 \ldots$

Problem IV Recurrent sequences and reasoning by induction ：

Let $u_{n+1}=\sqrt{6-u_{n}}$ defined by $u_{n+1}=f\left(u_{n}\right)$ with $f(x)=\sqrt{6-x}$ and $u_{0}=5$
We have studied the behavior of this sequence in Assignment \＃9 by constructing the first terms on the graph of the function f and the $1^{\text {st }}$ bisector $(y=x)$ ．We have observed that the sequence $\left(u_{n}\right)$ is not monotonous，is bounded by 0 and 5 and is converging towards 2 ．
Now we are going to prove it formally．（Not to be confused with the study of $u_{n}=f(n)$ ）．
1° ）show by induction that for any n ，we have $0 \leq u_{n} \leq 5$ ，
2° ）show that for any $\mathrm{n} \geq 0,\left|u_{\mathrm{n}}-2\right| \leq 1 / 2\left|u_{\mathrm{n}-1}-2\right|$
$\left.3^{\circ}\right)$ deduct from the previous inequality that for any $\mathrm{n} \geq 0,\left|u_{\mathrm{n}}-2\right| \leq(1 / 2)^{\mathrm{n}-1}$ ．
4° ）Conclusion ？

