Mathematics - Elective Pre-Calc. - Senior 1 - Assignment # 10- Dec. 14 - p.1/2

Numerical Sequences (3)

Problem I – The laughing cow

Suppose that the original box has a diameter of 10 cm, and that on each box the diameter of earrings box of the laughing cow is 1/5 of the previous one.

Find how many cows can be drawn until the diameter of the earrings box becomes less thsan1mm. [let $d_0 = 10$ and d_n the diameter of the n^{th} box]

Problem II – Square the squares

Suppose that the first square has a side of 10cm and that each square has a side of ³/₄ of the previous one. What is the area that can be covered by the total sum of the area of the infinite sequence of these squares.

北京景山学校	Name :		Grade :	/100
Mathematics - Elective Pre-Calc Senior 1 - Assignment # 10- Dec. 14 - p.2/2				

Problem III Infinite decimals

Let *a* be a number (digit) between 1 and 9 included. Let $u_n = a.10^{-n}$, and $S_n = u_1 + u_2 + u_3 + ... + u_n$ 1°) Write the expression of S_n as a function of n and *a*.

2°) Write the number $N = 0.333\ 333\ 333\ \dots\ 333\ \dots$ in the previous form and prove that this number is a rational fraction to be found.

3°) Same problem with U = 0.999999999...999...

Problem IV Recurrent sequences and reasoning by induction :

Let $u_{n+1} = \sqrt{6-u_n}$ defined by $u_{n+1} = f(u_n)$ with $f(x) = \sqrt{6-x}$ and $u_0 = 5$

We have studied the behavior of this sequence in Assignment #9 by constructing the first terms on the graph of the function f and the 1st bisector (y=x). We have observed that the sequence (u_n) is not monotonous, is bounded by 0 and 5 and is converging towards 2.

Now we are going to prove it formally. (Not to be confused with the study of $u_n = f(n)$).

1°) show by induction that for any n, we have $0 \le u_n \le 5$,

2°) show that for any $n \ge 0$, $|u_n - 2| \le \frac{1}{2} |u_{n-1} - 2|$

3°) deduct from the previous inequality that for any $n \ge 0$, $|u_n - 2| \le (\frac{1}{2})^{n-1}$.

4°) Conclusion ?