Applications of Euler's method

I. Let's suppose that we have a derivable function f such that for any real x,

$$
f^{\prime}(x)=\frac{1}{1+x^{2}} \text { and } f(0)=0
$$

1. Prove that for very small values of h, and any Integer n, we have the relationship :

$$
f((n+1) h) \approx f(n h)+\frac{h}{1+(n h)^{2}}
$$

2. Use a Spreadsheet program to calculate $\mathrm{f}(1), \mathrm{f}(2), \mathrm{f}(10)$, [give 3 decimals]
3. Use this spreadsheet program to draw the curve of that function on $[0,10]$
4. Is there an asymptote for the graph of that function?
5. Can you "guess" what is that function?
II. Let's suppose that we have a derivable function f such that for any real x,

$$
f^{\prime}(x)=2 x \text { and } f(0)=0
$$

1. Prove that for very small values of h, and any Integer n, we have the relationship: $\quad f(n h) \approx h^{2}\left[n^{2}-n\right]$
2. Use a Spreadsheet program to calculate $\mathrm{f}(1), \mathrm{f}(2), \mathrm{f}(10)$ [give 3 decimals]
3. Use this spreadsheet program to draw the curve of that function on $[0,10]$
4. Is there an asymptote for the graph of that function?
5. Can you "guess" what is that function?
