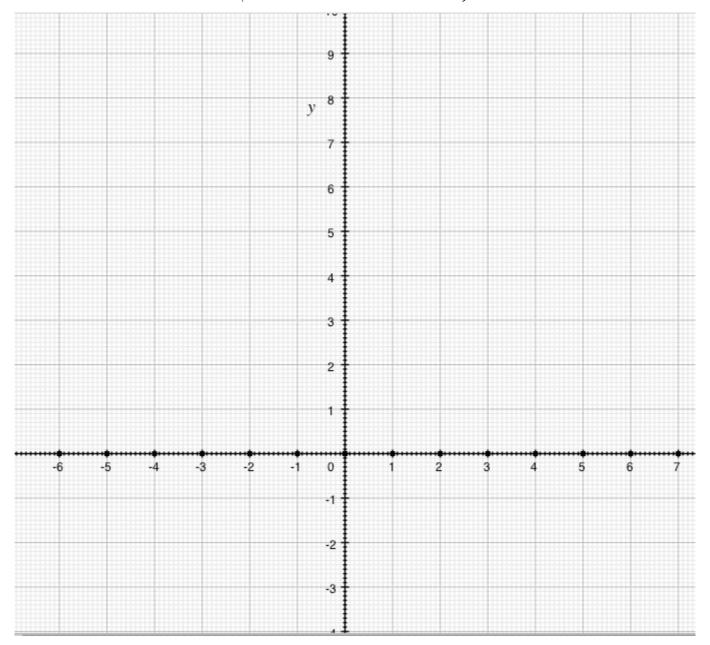
## Review of second degree and Homographic functions


References: Memos available on the class website

I . 1. Draw the Hyperbola and the two lines defined by the following equations :

(1) 
$$y = \frac{3x-10}{x-2}$$
; (2)  $y = x+5$ ; (3)  $y = 2x+5$ 

I.2. Find the coordinates of the intersection points of the 2 lines with the Hyperbola.

## (Show the calculations below)



I.3. Let m be any real number. We consider the straight line  $(\mathbf{D_m})$  defined by the equation

$$y = mx + 5$$

a) Show that  $(D_m)$  turns around a fixed point A while m varies from  $-\infty$  to  $+\infty$ .

b) Find for which values of m the line  $(D_m)$  cuts the Hyperbola in 2 points (write the proof below).

c) Explain why the line  $(\mathbf{D_1})$  is tangent to the Hyperbola in A(0;5).