北京景山学校
Mathematics－Calculus＋＋．－Senior 2.4
jiguanglaoshi＠gmail．com－http：／／beijingshanmaths．org
Study of the function f defined by $\mathrm{f}(0)=1$ and for $x \neq 0$ by $f(x)=\left(1+\frac{4}{x^{2}}\right)^{\frac{x}{2}}$
I－1．Complete the formula ： $\lim _{x \rightarrow \pm \infty} x \ln \left(1+\frac{1}{x}\right)=1$ and write the complete proof below
$x \cdot \ln \left(1+\frac{1}{x}\right)=\frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}} ; X=\frac{1}{x} \rightarrow 0 \therefore \lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=\lim _{X \rightarrow 0} \frac{\ln (1+X)-\ln (1)}{X}=\ln ^{\prime}(1)=\frac{1}{1}=1$
2．Use the previous result to find $\lim _{x \rightarrow \pm \infty} x \ln \left(1+\frac{1}{x^{2}}\right)=0^{ \pm}$with complete proof below $x \cdot \ln \left(1+\frac{1}{x^{2}}\right)=\frac{1}{x}\left[x^{2} \ln \left(1+\frac{1}{x^{2}}\right)\right] ;$ and from $[1] \lim _{x \rightarrow+\infty} X \ln \left(1+\frac{1}{X}\right)=1 \therefore \lim _{x \rightarrow \pm \infty} x \cdot \ln \left(1+\frac{1}{x^{2}}\right)=0^{ \pm} \times 1=0^{ \pm}$
3．Complete the formula ： $\lim _{x \rightarrow 0^{+}} x \ln x=0^{-}$with complete proof below ：

$$
x \cdot \ln (x)=-\frac{\ln \left(\frac{1}{x}\right)}{\frac{1}{x}} ; X=\frac{1}{x} \rightarrow+\infty ; \frac{\ln X}{X} \rightarrow 0^{+} \Rightarrow \lim _{x \rightarrow 0^{+}} x \ln x=0^{-}
$$

4．Use the previous result to find $\lim _{x \rightarrow 0} x \ln \left(1+\frac{1}{x^{2}}\right)=0$ with complete proof below ：

$$
x \cdot \ln \left(1+\frac{1}{x^{2}}\right)=x \ln \left(x^{2}+1\right)-2 x \ln |x| \therefore \lim _{x \rightarrow 0} x \cdot \ln \left(1+\frac{1}{x^{2}}\right)=0 \times \ln (1) \pm 2 \times 0=0
$$

II－Let，for $x \neq 0, U(x)=x \ln \left(1+\frac{4}{x^{2}}\right)$ ．
Calculate the derivative $(x \neq 0)$ ，

$$
U^{\prime}(x)=\ln \left(1+\frac{4}{x^{2}}\right)-\frac{8}{x^{2}+4}
$$

Let $V(x)=U^{\prime}(x),(x \neq 0)$ calculate $V^{\prime}(x)=-\frac{8}{x\left(x^{2}+4\right)}+\frac{16 x}{\left(x^{2}+4\right)^{2}}=8 \frac{x^{2}-4}{x\left(x^{2}+4\right)^{2}}$ ；
Chart the sign of $V^{\prime}(x)$ and the variations of V on R^{*} with the limits and the Minima values．Explain why $\mathrm{V}(\mathrm{x})$ has two zeroes a and b and place them．
V is stictly monotonous and continuous on $[-2 ; 0[$ and changes sign from $m=V(-2)=\ln 2-1 \approx-.3<0$ to $+\infty, \therefore$ there is one and only one zero of V on［－2；0［，Same on ］0；2］．

北京景山学校
Mathematics－Calculus＋＋．－Senior 2.4
jiguanglaoshi＠gmail．com－http：／／beijingshanmaths．org
III－Study the variations of \mathbf{f} ：
1．Show that she sign of $f^{\prime}(x)$ is the same as that of $U^{\prime}(x)$
$f(x)=\left(1+\frac{4}{x^{2}}\right)^{\frac{x}{2}}=\exp \left\{\ln \left[\left(1+\frac{4}{x^{2}}\right)^{\frac{x}{2}}\right]\right\}=\exp \frac{x}{2} \ln \left(1+\frac{4}{x^{2}}\right)=\exp \left(\frac{1}{2} U(x)\right)$
$\therefore f^{\prime}(x)=\exp \left(\frac{1}{2} U(x)\right) \frac{1}{2} U^{\prime}(x)=\frac{1}{2}\left(1+\frac{4}{x^{2}}\right)^{\frac{x}{2}} U^{\prime}(x) \quad \therefore \quad \operatorname{Sgn}\left[f^{\prime}(x)\right]=\operatorname{Sgn}\left[U^{\prime}(x)\right]$
2．Study the limits of $\mathbf{U}(\mathbf{x})$ and $\mathbf{f}(\mathbf{x})$ ：［indicate which formula is used］
a．\quad Show the limit of $U(x)$ and give the limit of $f(x)$ at $x=0$
from［4］： $\lim _{x \rightarrow 0} x \ln \left(1+\frac{1}{x^{2}}\right)=0 \Rightarrow \lim _{x \rightarrow 0} 2 \frac{x}{2} \ln \left(1+\frac{4}{x^{2}}\right)=2 \times 0=0$
\exp is continuous，then $\lim _{X \rightarrow 0} \exp (X)=\exp (0)=e^{0}=1 \therefore \lim _{x \rightarrow 0} f(x)=1$
b．Show the limits of $U(x)$ and give the limit of $f(x)$ in $+\infty$ and $-\infty$
from［2］： $\lim _{x \rightarrow \pm \infty} x \ln \left(1+\frac{1}{x^{2}}\right)=0 \Rightarrow \lim _{x \rightarrow \pm \infty} 2 \frac{x}{2} \ln \left(1+\frac{4}{x^{2}}\right)=2 \times 0=0$

$$
\exp \text { is continuous, then } \lim _{X \rightarrow 0} \exp (X)=\exp (0)=e^{0}=1 \therefore \lim _{x \rightarrow 0} f(x)=1
$$

3．Complete the chart of f with all the previous results ：
［one can admit that $a \subset-1 ; b \approx 1 ; f(-1) \approx 0.4 ; f(1) \approx 2.2$

x	$-\infty$		－2		－1		0		1	2		$+\infty$
Sign［f＇(x) ］			－		0	\oplus	\｜	\oplus	0	－		
Variations and limits of $f(x)$	1	y	0.5	π	0.4	λ	（1）	λ	2.2	＞ 2	y	1

4．Graph of the function f （show the asymptotes if any）

