北京素山学校
Mathematics - Calculus ++. - Senior 2.4
jiguanglaoshi@gmail.com - http://beijingshammaths.org

Study of the function f defined by f(0) =1 and for
$$x \neq 0$$
 by $f(x) = \left(1 + \frac{4}{x^2}\right)^{\frac{1}{2}}$
1- 1. Complete the formula : $\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right) = 1$ and write the complete proof below
 $x.\ln\left(1 + \frac{1}{x}\right) = \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$; $X = \frac{1}{x} \to 0$ $\therefore \lim_{x \to 0} \frac{\ln(1 + X)}{X} = \lim_{x \to 0} \frac{\ln(1 + X) - \ln(1)}{X} = \ln'(1) = \frac{1}{1} = 1$
2. Use the previous result to find $\lim_{x \to 2^{\infty}} x \ln\left(1 + \frac{1}{x^2}\right) = 0^{+}$ with complete proof below
 $x.\ln\left(1 + \frac{1}{x^2}\right) = \frac{1}{x} \left[x^2 \ln\left(1 + \frac{1}{x^2}\right)\right]$; and from [1] $\lim_{x \to 2^{\infty}} x \ln\left(1 + \frac{1}{x}\right) = 1 \div \lim_{x \to \infty} x.\ln\left(1 + \frac{1}{x^2}\right) = 0^{+} \times 1 = 0^{+}$
3. Complete the formula : $\lim_{x \to 0^{+}} x \ln x = 0^{-}$ with complete proof below :
 $x.\ln(x) = -\frac{\ln\left(\frac{1}{x}\right)}{\frac{1}{x}}$; $X = \frac{1}{x} \to +\infty$; $\frac{\ln X}{X} \to 0^{+} \Rightarrow \lim_{x \to 0^{+}} x \ln x = 0^{-}$
4. Use the previous result to find $\lim_{x \to 0^{+}} x \ln\left(1 + \frac{1}{x^2}\right) = 0$ with complete proof below :
 $x.\ln\left(1 + \frac{1}{x^2}\right) = x \ln(x^2 + 1) - 2x \ln|x|$ $\therefore \lim_{x \to 0^{+}} x.\ln\left(1 + \frac{1}{x^2}\right) = 0 \times \ln(1) \pm 2 \times 0 = 0$
II- Let, for $x \neq 0$, $U(x) = x \ln\left(1 + \frac{4}{x^2}\right)$.
Calculate the derivative ($x \neq 0$), $U'(x) = \ln\left(1 + \frac{4}{x^2}\right) - \frac{8}{x^2 + 4}$
Let $V(x) = U'(x)$, ($x \neq 0$) calculate $\boxed{V'(x) = -\frac{8}{x(x^2 + 4)} + \frac{16x}{(x^2 + 4)^2} = 8\frac{x^2 - 4}{x(x^2 + 4)^2}}$.

Chart the sign of V'(x) and the variations of V on R* with the limits and the Minima values. Explain why V(x) has two zeroes a and b and place them. V is stictly monotonous and continuous on [-2; 0[and changes sign from $m=V(-2)=ln2-1\approx-.3 < 0$ to $+\infty$, \therefore there is one and only one zero of V on [-2;0[, Same on]0;2].

x	- ∞		-2	a	0		b	2		$\infty + \infty$
Sign [V'(x)]			0	\oplus				0	\oplus	
Variations and limits of V(x)	0	×	- 0.3	≠ 0 ≠		*	0 🖌	- 0.3	ѫ	0
Sign of U'(x)				0 ⊕		\oplus	0			

6pts

