\qquad
\square
Mathematics－Calculus＋＋．－Senior 2.4 TEST－April $15-40$ min．p．1／2－［B］
jiguanglaoshi＠gmail．com－http：／／beijingshanmaths．org
Study of the function f defined by $\mathrm{f}(0)=1$ and for $x \neq 0$ by $f(x)=\left(1+\frac{4}{x^{2}}\right)^{\frac{x}{2}}$
I－1．Complete the formula ： $\lim _{x \rightarrow \pm \infty} x \ln \left(1+\frac{1}{x}\right)=\ldots$ and write the complete proof below

2．Use the previous result to find $\lim _{x \rightarrow \pm \infty} x \ln \left(1+\frac{1}{x^{2}}\right)=\ldots$ with complete proof below

3．Complete the formula ： $\lim _{x \rightarrow 0^{+}} x \ln x=\ldots$ with complete proof below ：

4．Use the previous result to find $\lim _{x \rightarrow 0} x \ln \left(1+\frac{1}{x^{2}}\right)=\ldots$ with complete proof below ：

II－Let，for $x \neq 0, U(x)=x \ln \left(1+\frac{4}{x^{2}}\right)$.
Calculate the derivative $(\mathrm{x} \neq 0), U^{\prime}(x)=$
Let $V(x)=U^{\prime}(x),(\mathrm{x} \neq 0)$ calculate $V^{\prime}(x)$ ：
Chart the sign of $V^{\prime}(x)$ and the variations of V on R^{*} with the limits and

x	$-\infty$	$+\infty$
Sign $\left[V^{\prime}(x)\right]$		
Variations and limits of $V(x)$		
Sign of $U^{\prime}(x)$		

\square

1．Show that she sign of $f^{\prime}(x)$ is the same as that of $U^{\prime}(x)$

2．Study the limits of $\mathbf{U}(\mathbf{x})$ and $\mathbf{f}(\mathbf{x})$ ：［indicate which formula is used］
a．Show the limit of $U(x)$ and give the limit of $f(x)$ at $x=0$
b．Show the limits of $U(x)$ and give the limit of $f(x)$ in $+\infty$ and $-\infty$

3．Complete the chart of f with all the previous results ：
［one can admit that $a \approx-1 ; b \approx 1 ; f(-1) \approx 0.4 ; f(1) \approx 2.2$

x	$-\infty$	$+\infty$
Sign $\left[f^{\prime}(x)\right]$		
Variations and limits of $f(x)$		

4．Graph of the function f （show the asymptotes if any）

