Applications of derivatives and integrals
 Rolle－MVT－L’Hospital

I．Rolle＇s theorem［French $-X V I I^{\text {th }} A D$ ］：
Hypothesis $\left\{\begin{array}{c}f \text { is continuous on }[a ; b] \\ f \text { is differentiable on }[a ; b] \\ f(a)=f(b)\end{array}\right\}$
Conclusion $\left\{\begin{array}{c}\text { There is at least one } c \in[a ; b] \\ \text { such that } f^{\prime}(c)=0\end{array}\right\}$

Graphic interpretation ：if a curve joins two points without discontinuity，then obviously there must be a point of the curve corresponding to a Maximum or a Minimum off on［a；b］，and since f is differentiable the tangent line in that point is parallel to（ $O x$ ）axis．

II．The Mean Value Theorem ：

Hyp ：\｛c $\left.\begin{array}{c}f \text { is continuous on }[a ; b] \\ f \text { is differentiable on }[a ; b]\end{array}\right\}$

$$
\Rightarrow\left\{\begin{array}{c}
\text { There is at least one } c \in[a ; b] \\
\text { such that } f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\end{array}\right\}
$$

Graphic interpretation ：if a curve joins to points without discontinuity，then obviously there must be a point of the curve where the tangent line is parallel to the secant．

III．Equivalence between Rolle＇s and the Mean Value Theorem．

a．M．V．T．\Rightarrow Rolle＇s Easy ！If $f(b)=f(a)$ then $f^{\prime}(c)=0$ ．Bingo $!!!$
b．Rolle＇s \Rightarrow M．V．T．：let＇s consider the function g defined by the distance between the curve and the secant line between the two extreme points： $g(x)=f(x)-s(x)$ where $\mathrm{s}(\mathrm{x})$ is the function associated to the secant line ： for any point（ x, y ）on the secant line we have ：

$$
\begin{gathered}
\frac{y-f(a)}{x-a}=\frac{f(b)-f(a)}{b-a} \Leftrightarrow y=s(x)=(x-a) \frac{f(b)-f(a)}{b-a}+f(a) \\
\text { and then } g(x)=f(x)-\left[(x-a) \frac{f(b)-f(a)}{b-a}+f(a)\right]
\end{gathered}
$$

This new function g is indeed continuous \＆differentiable on［a；b］since fand sare so．
we also have $g(a)=0$ and $g(b)=0$ hence $g(a)=g(b)$ ，and $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$
Therefore all hypotheses of Rolle＇s theorem apply to the function g ：
Conclusion ：there is one $c \in[a ; b]$ such that $g^{\prime}(c)=0 \Leftrightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ ．Finished！
Note ：we have not provided here the proof of either ones of these two theorems ：too advanced ！！！ a formal proof of the MVT can be found in some higher degree calculus books．
The equivalence of the two theorems does not give a proof to either ones！

IV．Mean value of a function on an interval［a；b］

Let $F(x)=\int_{a}^{x} f(t) . d t$ then we know that if is continuous on $[a ; b) F$ is continuous and differentiable on［a；b］and $F^{\prime}(x)=f(x)$ ．
We also know that $F(b)-F(a)=\int_{a}^{b} f(t) . d t$ then from MVT there is a
$c \in[a ; b]$ such that $F^{\prime}(c)=\frac{F(b)-F(a)}{b-a} \Leftrightarrow f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) \cdot d t$

$$
\Leftrightarrow \int_{a}^{b} f(t) \cdot d t=(b-a) f(c)
$$

By definition this number $\boldsymbol{\mu}=\boldsymbol{f}(\boldsymbol{c})$ is called the mean value of the function \mathbf{f} on $[\boldsymbol{a} ; \boldsymbol{b}]$ ．
μ represents the height of a rectangle of base $[\mathbf{a} ; \mathbf{b}]$ having the same area that the domain defined by the curve of f and the $[0 x]$ axis on $[a ; b]$ ．
Ex $f(x)=\frac{1}{4} x^{3}-\frac{9}{4} x^{2}+6 x-3 ; \int_{1}^{5} f(x) d x=\left[\frac{x^{4}}{16}-3 \frac{x^{3}}{4}+3 x^{2}-3 x\right]_{1}^{5}=6 \quad \therefore \mu=\frac{1}{5-1} \int_{1}^{5} f(x) d x=\frac{6}{4}=1.5 \quad$（Cf．picture）
Algebraic interpretation $\boldsymbol{\mu}=$ limit of the arithmetic mean of n values of f on $[\mathrm{a} ; \mathrm{b}]$ ：

$$
\begin{array}{r}
\int_{a}^{b} f(t) . d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n}=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(x_{i}\right)=(b-a) \lim _{n \rightarrow \infty} \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n} \\
\text { Therefore } \lim _{n \rightarrow \infty} \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n}=\frac{1}{b-a} \int_{a}^{b} f(t) \cdot d t=\mu
\end{array}
$$

－It is indeed this formula which justifies the definition of＂mean value of \boldsymbol{f} on $[\boldsymbol{a} ; \boldsymbol{b}]$＂and of the $M V T$ ．

Abstract

Important remark［Thank you 孟庆晗 ！！！］：In some books the proof of the formula $F^{\prime}(x)=f(x)$ is given by using the mean value theorem applied to the function F ．Hence we would think that the above formula of the mean value of f on［a；b］seems to be using itself to prove itself，which would not be a correct way of reasonning． But it＇s possible to prove that $F^{\prime}(x)=f(x)$ without using the mean value of f ．So we are safe ！ In fact when the mean value of is used to prove that $F^{\prime}(x)=f(x)$ ，it is implicitely using the MVT，then the above result is just a retranscription of the MVT．

V．Extended formula of the MVT ：

If f and g are differentiable and $g^{\prime}(x) \neq 0$ on $[a ; b]$ ，there is $c \in[a ; b]$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$ Proof ：$h(x)=f(x)[g(b)-g(a)]-g(x)[f(b)-f(a)]-f(a) g(b)+f(b) g(a)$ matches Rolle＇s conditions：$h(a)=0$ and $h(b)=0$ and $h^{\prime}(x)=$ $f^{\prime}(x)[g(b)-g(a)]-g^{\prime}(x)[f(b)-f(a)]$ then there is $c \in[a ; b]$ such that $h^{\prime}(c)=0 \Leftrightarrow f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)]$ ．Done ！

VI．L＇Hospital＇s rule［French－XVII ${ }^{\text {th }} A D$ ］to solve indeterminate forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$

$$
\left\{\lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0, \text { for } x \neq a, g(x) \neq 0, g^{\prime}(x) \neq 0\right\} \Rightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Proof ：On $[a ; x] f$ and g are differentiable and $g \neq 0$ then from the extended MVT ：
there is $c(x) \in[a ; x]$ such that $\frac{f^{\prime}(c(x))}{g^{\prime}(c(x))}=\frac{f(x)-f(a)}{g(x)-g(a)}$ ．To make f and g continuous at a we fix $f(a)=0$ and $g(a)=0$ ，then when $x \rightarrow a ; c(x) \rightarrow a$ and． $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(c(x))}{g^{\prime}(c(x))}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ ．
Note iff＇and g＇are continuous in a and $g^{\prime}(a) \neq 0$ then this rule comes directly from the following ：

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \frac{x-a}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a} \frac{x-a}{g(x)-g(a)}=f^{\prime}(a) \frac{1}{g^{\prime}(a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

－L＇hospital＇s rule is most powerful when $f^{\prime}(a)$ and $g^{\prime}(a)$ are not both defined or if $g^{\prime}(a)=0$［See Exercises］
－The rule holds for $\frac{\infty}{\infty}$ and when $\mathrm{a}=\infty\left\{\lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty, g \neq 0, g^{\prime} \neq 0\right\} \Rightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$（admitted）．

