Model for a complete study of a rational function

Reminders ： 1° ）The set of definition of the function must be defined in terms of Intervals．
2° ）The limits of a rational function when the variable goes to infinity is the same as the ratio of its higher degrees terms．
3° ）The horizontal and vertical asymptotes are determined by the limits of f at on the boundaries of each interval of the set of definition．
4° ）The variations of a function are determined by the sign of it＇s derivative．Therefore it＇s， most of the time，necessary to calculate the derivative，determine it＇s zeroes and study whether or not there is a change of sign．If there is no change of sign then it＇s not a maximum or minimum，it＇s an inflexion point．
5° ）A line（D）of equation $y=a x+b$ is an oblique asymptote to the curve representing the graph of the function if and only if the difference $[f(x)-(a x+b)]$ tends towards 0 when x goes to infinity．The position of the curve with respect of the line（D）must be determined by the sign of that difference．
6° ）The zeroes of a function can be approximately determined by observing the changes of sign in a given interval ：if f is a derivable（hence continuous）and monotonous function on［a；b］ and if $f(a)$ ．$f(b)<0$ then there is one and only one α in $[\mathrm{a} ; \mathrm{b}]$ such that $f(\alpha)=0$ ．Then if the interval $[\mathrm{a} ; \mathrm{b}]$ is small， a and b can be considered as approximate values of α ．
7° ）Summarize all the previous studies in a chart showing the boundaries of the definition set，the zeroes of the function，the zeroes of its derivative，the values of maximum or minimum，and the limits．
8° ）Eventually study the symmetries with respect to a given vertical axis or a given point．
9° ）Find the equation of tangent line at the intersection of the curve of the function with the ＂vertical＂axis．Study the case of singular points（vertical tangent，half tangent，inflexion point）．
10° ）Draw carefully the curve after having carefully placed the asymptotes，the zeroes，the maximum and minimum，and the intersections with the axis．

$$
f(x)=\frac{2 x^{3}-x^{2}+2}{(2 x-3)^{2}}
$$

1．Set of definition ：$\left.D_{f}=\mathbb{R} \backslash\left\{\frac{3}{2}\right\}=\right]-\infty ; \frac{3}{2}[\bigcup] \frac{3}{2} ;+\infty[$
2． $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{2 x^{3}}{4 x^{2}}\right)=\lim _{x \rightarrow+\infty} \frac{x}{2}=+\infty \quad ; \quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(\frac{2 x^{3}}{4 x^{2}}\right)=\lim _{x \rightarrow-\infty} \frac{x}{2}=-\infty ; \lim _{x \rightarrow \frac{3}{2}} f(x)=+\infty$
Therefore there are 4 infinite branches，with one vertical asymptote $x=3 / 2$ ．To find the oblique asymptotes one can use two methods ：
a）Break the given expression of $f(x)$ into fractions such as $f(x)=a x+b+\frac{c x+d}{(2 x-3)^{2}}$
and find a, b, c, d ，by identification or by Euclidian division of the polynomials．
b）Calculate $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=a$ ，then $\lim _{x \rightarrow \infty}[f(x)-a x]=b$ ．But in both cases we need to know the sign of the difference $[f(x)-(a x+b)]$ to be able to fix the position of the curve with respect to the asymptote （D）defined by $y=a x+b$ ．In this case we find $f(x)=\frac{1}{2} x+\frac{5}{4}+\frac{\frac{21}{2} x-\frac{37}{4}}{(2 x-3)^{2}}=>$ asymptote equation $y=\frac{1}{2} x+\frac{5}{4}$ because $\lim _{x \rightarrow+\infty}\left[f(x)-\left(\frac{1}{2} x+\frac{5}{4}\right)\right]=\lim _{x \rightarrow+\infty} \frac{\frac{21}{2} x-\frac{37}{4}}{(2 x-3)^{2}}=\lim _{x \rightarrow+\infty}\left[\frac{21 x}{8 x^{2}}\right]=\lim _{x \rightarrow+\infty} \frac{21}{8 x}=0^{+}\left(\right.$or 0^{-}for $\left.-\infty\right)$ Therefore（Cf）is above（D）for $x>\frac{37}{42} \simeq 0.8$ and under（D）if $x<\frac{37}{42} \simeq 0.8$（the change of sign corresponds to the point where the curve crosses it＇s asymptote）．

北京景山学校 http：beijingshanmaths．org

3．Derivative

$$
f^{\prime}(x)=\frac{4 x^{3}-18 x^{2}+6 x-8}{(2 x-3)^{3}}
$$

4．The Zeroes of the derivative are the Zeroes of $P(x)=4 x^{3}-18 x^{2}+6 x-8$ ． Therefore we must study the variations of P to examine its zeroes and sign．To do so we must study the sign of $P^{\prime}(x)=6\left(2 x^{2}-6 x+1\right)$ and chart the variations of P （The zeroes of $P^{\prime}(x)$ are $\frac{3-\sqrt{7}}{2} \approx 0.2$ and $\frac{3+\sqrt{7}}{2} \simeq 2.8$ ）
$\left.\begin{array}{|c|ccccc|}\hline x & -\infty & 0.2 & 2.8 & \alpha+\infty \\ \hline \text { Sign of }[P '(x)] & & + & 0 & - & \mathbf{0} \\ \hline \text { SIGN of } P & & - & -7.4 & - & -44.5\end{array}\right)$

From the graph we can see that α is approximately equal to 4．2，and we can check by calculations that $P(4.2)<0$ and $P(4,3)>0$ hence $\alpha \approx 4.25$

The sign of $f^{\prime}(x)$ is the same as the sign of $P(x)$ for $x>1.5$ and opposite for $x<1.5$

x	$-\infty$	-0.9	0	1.5	4.25		$+\infty$				
Sign $\left[f^{\prime}(x)\right]$			+		$\\|$	-	0	+			
Variations	$-\infty$	0	\nearrow	0.2	\nearrow	$+\infty \\|+\infty$	\searrow	$\min =4.5$	\nearrow	$+\infty$	
and limits of f											

