Derivative vs Differential

Definition: the differential dy of a numerical function in one variable on a given point x is equal to the variation of the ordinate measured on the tangent line at that point, for the same small variation dx of the variable.

We may define the differential as the "principal part of the variation $\Delta \boldsymbol{y}$ " when $d x$ is "small enough".

$$
\begin{gathered}
f^{\prime}(x)=\lim _{d x \rightarrow 0} \frac{f(x+d x)-f(x)}{d x} \therefore \frac{f(x+d x)-f(x)}{d x}=f^{\prime}(x)+e \\
\therefore \quad f(x+d x)-f(x)=f^{\prime}(x) \cdot d x+e \cdot d x
\end{gathered}
$$

Let $\Delta y=f(x+d x)-f(x)$, then for a small value of $d x: \Delta y \simeq f^{\prime}(x) \cdot d x$
The number $f^{\prime}(x) \cdot d x$ is noted dy and is called the differential of f at x.

$$
\text { therefore : } d y=f^{\prime}(x) \cdot d x \quad \text { or } \quad \frac{d y}{d x}=f^{\prime}(x)
$$

Example: let

$$
f(x)=\frac{2.8 x-34.2}{x-9} \text { and } f^{\prime}(x)=\frac{9}{(x-9)^{2}} ; x=5, f(5)=5.05, f^{\prime}(5)=\frac{9}{16}=0.506 \approx 0.51
$$

then to find an approximate value of $f(5.5)$ we may use the differential off at $x=5$, with $d x=+0.5$,
then $d y=f^{\prime}(5) \cdot d x=0.51 \times 0.5 \approx 0.25$, therefore $\Delta \mathrm{y} \approx 0.25$, then $\mathrm{f}(5.5)-\mathrm{f}(5) \approx 0.25$, finally $\mathrm{f}(5.5) \approx \mathrm{f}(5)+0.29 \approx 5.05+0.25=5.30$.

With direct calculation we would find with a calculator $f(5.5)=(2.8 \times 5.5-34.2) /(5.5-9)=5.37$ The error is less than 0.1 , which is considered as very satisfactory, with respect of the picture.

