and their applications on sequences

1．Finite Variations Inequalities ：

1．General form ：If a function f is differentiable on $[a ; b]$ and such that for any $x \in[a ; b], m \leq f^{\prime}(x) \leq M$, then for any interval $[u ; v] \subseteq[a ; b] m \leq \frac{f(v)-f(u)}{v-u} \leq M$
2．Particular form：$m(b-a) \leq f(b)-f(a) \leq M(b-a)$
3．Reduced form ：$\left|f^{\prime}(x)\right| \leq M \Rightarrow|f(b)-f(a)| \leq M|b-a|$
Proof：from the MVT we know that there is one $c \in[u ; v]$ such that $f^{\prime}(c)=\frac{f(v)-f(u)}{v-u}$ Then the initial conditions on $f^{\prime}(x)$ give the result．

2．Application to prove the convergence of some recursive sequences ：
1．General case ：Let $\left(u_{n}\right)$ be defined by $u_{n+1}=f\left(u_{n}\right)$ and u_{0} fixed，with f defined on ［a；b］，such that ：
i．for any $n \in N, a \leq u_{n} \leq b$
ii．There is a fixed point $\alpha=f(\alpha), \alpha \in[a ; b]$
iii．$\left|f^{\prime}(x)\right| \leq k$ for any x on $[a ; b]$
with $0<k<1$ ．Then for $n \in N$ ，

$$
\left|u_{n+1}-\alpha\right|=\left|f\left(u_{n}\right)-f(\alpha)\right| \leq k .\left|u_{n}-\alpha\right|
$$

Therefore，by immediate recurrence we have，

$$
\left|u_{n}-\alpha\right| \leq k^{n} .\left|u_{0}-\alpha\right|
$$

Since lim $k^{n}=0$ ，then $\lim \left|u_{n}-\alpha\right|=0$ which
 means that lim $u_{n}=\alpha$（fixed point of f）．

2．Example ：$f=$ cosine，$a=0, b=\pi / 3, u_{0}=\pi / 3, f^{\prime}(x)=-\sin (x) \Rightarrow\left|f^{\prime}(x)\right| \leq \sqrt{ } 3 / 2$ there is obviously a fixed point α ，such that $\alpha=\cos (\alpha)$（Inerception of the first bisector $(y=x)$ with the curve of Cosine on the interval $[0 ; \pi / 3]$ ．
Then we have $\left|u_{n}-\alpha\right| \leq k^{n} .\left|u_{0}-\alpha\right|$ with $k=\sqrt{ } 3 / 2 \therefore|k|<1$ ．
Hence we may obtain an approximate value of α by majoring ．$\left|u_{0}-\alpha\right|=|\pi / 3-\alpha|$ by $\pi / 6$ and then for $n=10$ we would have $\left|u_{10}-\alpha\right| \leq(\sqrt{ } 3 / 2)^{10} . \pi / 6=0.12$
which means that $\alpha=\cos (\cos (\cos (\cos (\cos (\cos (\cos (\cos (\cos (\cos (\pi / 3)))))))))$ with an error less than 10^{-2} ．A calculator gives $\alpha \approx 0.75$ radians or approximately 43° ．

