北京景山学校

Last MEMO June 17 - 2011 – p.1/1

Mathematics - Calculus ++. - Senior 2.4 June jiguanglaoshi@gmail.com - http://beijingshanmaths.org

> Applications of derivatives and integrals Finite Variations Inequalities

and their applications on sequences

1. Finite Variations Inequalities :

- 1. <u>General form</u>: If a function f is differentiable on [a;b] and such that for any $x \in [a;b], \overline{m \leq f'(x) \leq M}$, then for any interval $[u;v] \subseteq [a;b]$ $m \leq \frac{f(v) f(u)}{v u} \leq M$
- 2. <u>Particular form</u>: $m(b-a) \le f(b) f(a) \le M(b-a)$
- 3. <u>Reduced form</u>: $|f'(x)| \le M \implies |f(b) f(a)| \le M |b a|$

<u>Proof</u>: from the MVT we know that there is one $c \in [u;v]$ such that $f'(c) = \frac{f(v) - f(u)}{v - u}$ Then the initial conditions on f'(x) give the result.

2. Application to prove the convergence of some recursive sequences :

- 1. <u>General case</u> :Let (u_n) be defined by $u_{n+1} = f(u_n)$ and u_0 fixed, with f defined on [a;b], such that : i. for any $n \in N$, $a \le u_n \le b$ ii. There is a fixed point $\alpha = f(\alpha)$, $\alpha \in [a;b]$ iii. $|f'(x)| \le k$ for any x on [a;b]with 0 < k < 1. Then for $n \in N$, $|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \le k. |u_n - \alpha|$ Therefore, by immediate recurrence we have, $[u_n - \alpha| \le k^n. |u_0 - \alpha|]$ Since $\lim k^n = 0$, then $\lim |u_n - \alpha| = 0$ which means that $\lim u_n = \alpha$ (fixed point of f).