Let f be the function defined by ：$f(x)=1+\frac{x-1}{\sqrt{x^{2}+1}}$ and $u_{n+1}=f\left(u_{n}\right)$ with $u_{0}=2$ ．
1° ）Study the limits of $f(x)$ on ］－$;+\infty$［ and give the equations of the asymptotes．
$\left.2^{\circ}\right) \quad$ Calculate $f^{\prime}(x)$ and study it＇s sign and give the variations of f ．
$\left.3^{\circ}\right)$ Show that there is at least on fixed point for f ，such that $f(x)=x$ ．
$\left.4^{\circ}\right)$ Draw the graph off on $[-2 ; 2]$ and show the construction of the first terms of $\left(u_{n}\right)$
$\left.5^{\circ}\right)$ Research of a majorant $M, 0<M<1$ for $\left|f^{\prime}(x)\right|$ on［1；2］：
i．Calculate f＂＇(x) ，second derivative of f ，on on［1；2］
ii．Study the Sign of $f^{\prime \prime}(x)$ and chart the variations off＇(x) on［1；2］．
iii．Show that for $x \in[1 ; 2],|f(x)| \leq 1 / \sqrt{ } 2$
6° Use the Finite Variations Inequalities to prove that lim $u_{n}=1$ ．

Limits ：$\left\{\begin{array}{c}\lim _{x \rightarrow+\infty} f(x)=2 \\ \lim _{x \rightarrow-\infty} f(x)=0\end{array}\right.$
Asymptotes $:\left\{\begin{array}{l}\mathrm{y}=2 \text { for } \mathrm{x} \rightarrow+\infty \\ \mathrm{y}=0 \text { for } \mathrm{x} \rightarrow-\infty\end{array}\right.$
First derivative ：$f^{\prime}(x)=\frac{x+1}{\left(x^{2}+1\right)^{\frac{3}{2}}}$
Variations off：$f^{\prime}(x) \geq 0 \Leftrightarrow x \geq-1$

$\therefore f$ is increasing on $[-1 ;+\infty[$ and decreasing on $]-\infty ;-1]$
Second derivative ：$f^{\prime \prime}(x)=-\frac{2 x^{2}+3 x-1}{\left(x^{2}+1\right)^{\frac{5}{2}}}$
$\underline{\text { Variations off } f^{\prime}(x)}: f^{\prime \prime}(x) \geq 0 \Leftrightarrow \frac{-3-\sqrt{17}}{4} \leq x \leq \frac{-3+\sqrt{17}}{4} \simeq 0.3<1$
Then $f^{\prime}(x)$ is decreasing on $\left.[1 ; 2] \Rightarrow f(2) \leq f^{\prime} x\right) \leq f^{\prime}(1) . f^{\prime}(2) \approx 0.2$ and $f^{\prime}(1)=1 / \sqrt{ } 2 \approx 0.7$ ．
Hence on $[1 ; 2]\left|f^{\prime}(x)\right| \leq 1 / \sqrt{ } 2$ Then by the FVI，we get ：
For $n \in N,\left|u_{n+1}-1\right|=\left|f\left(u_{n}\right)-f(1)\right| \leq k .\left|u_{n}-1\right| \Rightarrow\left|u_{n}-1\right| \leq k^{n} .\left|u_{0}-1\right|=\left(\frac{1}{\sqrt{2}}\right)^{n}$

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{2}}\right)^{n}=0 \Rightarrow \lim _{n \rightarrow \infty}\left|u_{n}-1\right|=0 \Rightarrow \lim _{n \rightarrow \infty} u_{n}=1
$$

