Let f be the function defined by ：$f(x)=1+\frac{x-1}{\sqrt{x^{2}+1}}$ and $u_{n+1}=f\left(u_{n}\right)$ with $u_{0}=2$ ．
1° ）Study the limits of $f(x)$ on ］－$;+\infty$［ and give the equations of the asymptotes．
$\left.2^{\circ}\right) \quad$ Calculate $f^{\prime}(x)$ and study it＇s sign and give the variations of f ．
$\left.3^{\circ}\right)$ Show that there is at least on fixed point for f ，such that $f(x)=x$ ．
$\left.4^{\circ}\right)$ Draw the graph off on $[-2 ; 2]$ and show the construction of the first terms of $\left(u_{n}\right)$
$\left.5^{\circ}\right)$ Research of a majorant $M, 0<M<1$ for $\left|f^{\prime}(x)\right|$ on［1；2］：
i．Calculate f＂＇(x) ，second derivative of f ，on on［1；2］
ii．Study the Sign of $f^{\prime \prime}(x)$ and chart the variations of $f^{\prime}(x)$ on［1；2］．
iii．Show that for $x \in[1 ; 2],|f(x)| \leq 1 / \sqrt{ } 2$
6° ）Use the Finite Variations Inequalities to prove that lim $u_{n}=1$ ．

