Derivative vs Differential

1. $\operatorname{Let} f(x)=x^{3}-3 x+1$
2. First Derivative $f^{\prime}(x)=3 x^{2}-3$
3. Zeroes of $f^{\prime}(x)=\{-1 ; 1\}$, Two changes of sign $=>$ Two extrema
4. Seconde Derivative : $f^{\prime \prime}(x)=6 x$
5. Zero of the second derivative : $x=0, f^{\prime \prime}(x)$ changes sign at 0 .
6. Equation of the tangent line to the point $A(0 ; 1): y=f^{\prime}(0) \cdot x+f(0)=-3 x+1$
7. Chart of the variations off:
8. Graph of f, f^{\prime} and the tangent line in $A(0 ; 1)$

x	$-\infty$
Sign $\left[f^{\prime}(x)\right]$	
Variations off	

Problem I:

1. Find the aproximate value of $f(0.05)$ without calculator (Use the differential of fat $x=0$)

2. Same question for f(1.99).
3. Problem II : Let T be the function defined by $T(l)=2 \pi \sqrt{\frac{l}{g}}$ where g is the gravitational constant
[If l is in meters and $g=9.81$ m. s^{-2}, then $T(l)$ is the period in seconds of a long pendulum]
a. Find the derivative $T^{\prime}(l)$.
b. Find the expression of the differential of T at $l=1$.
c. Suppose that because of the change in temperature, the length of the pendulum increases by $\mathrm{dl}=+0.02 \mathrm{~m}$.
Find the approximate new value of $T: T(1.02)$ without calculator.
