

4. Study of the Variations of u and F : -2 -1 0 $+\infty$ х - 00 α The function u is decreasing on $]-\infty$; -2 [Sign [u'(x)]0 \oplus \cup]0; + ∞ [and increasing on]-2; 0[, ||///////|| 0^{-} m ~ $^{+\infty}$ with a minimum m = u(-2) = -0.4 < 0. 1 Variations & $\lim u(x) = 0$:: $\ln(1) = 0$ Sign of u(x) $- 0 \oplus ||/////////||$ \oplus 0^{+} $x \rightarrow \pm \infty$ then for x < -1, $\oplus 0 - ||////////||$ Sgn F'(x) \oplus 0^{+} $u(x) = \frac{-1}{x+1} \left(1 + (-x-1)\ln(-x-1) + (x+1)\ln(-x) \right)$ $+\infty$ Var. of F(x) 0^{+} ✓ M∿0⁺||////////|| 1 7 $\lim_{x \to -1^{-}} u(x) = \lim_{x \to -1^{-}} \frac{-1}{x+1} (1+0+0) = +\infty$

 $Sgn[F'(x)]=Sgn[x.u(x)], u(x) \text{ changes of sign at } x=\alpha, (-2<\alpha<-1), u(\alpha)=0 \therefore F'(\alpha)=0 \therefore M=F(\alpha)=0.1 \text{ Max}.$

5. Study of the limits of F at the ends of the intervals $]-\infty$; -1 $[\cup]$ 0; + ∞ [

(a)
$$\lim_{x \to -1^{-}} F(x) = 0^{+} \text{ because } \lim_{x \to 0^{+}} x^{2} \ln\left(1 + \frac{1}{x}\right) = -\infty, \text{ and } \lim_{x \to \infty} [ExpX] = 0^{+}$$

(b)
$$\lim_{x \to 0^{+}} F(x) = 1^{+} \text{ because } \lim_{x \to 0^{+}} x^{2} \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to 0^{+}} [x \ln(1+x)] + \lim_{x \to 0^{+}} [(x \ln x] = 0 \times \ln 1 + 0 = 0]$$

(
$$\lim_{x \to 0^{+}} [X \ln X] = 0^{-}), \text{ then by continuity of Exp, } \lim_{x \to 0} [ExpX] = e^{0} = 1 \therefore \lim_{x \to 0^{+}} F(x) = 1$$

Hence to extend the function F by continuity at $x = 0$ and $x = -1$ we may fix $F(0) = 1$ and $F(-1) = 0$.
(c)
$$\lim_{x \to -\infty} F(x) = 0^{+} \text{ because } \lim_{x \to -\infty} x^{2} \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to -\infty} x \left[x \ln\left(1 + \frac{1}{x}\right)\right] = -\infty \times 1 = -\infty$$

 $\therefore \lim_{x \to -\infty} x \ln\left(1 + \frac{1}{x}\right) = 1 \text{ then } \lim_{x \to -\infty} [ExpX] = 0^{+} \therefore \lim_{x \to -\infty} F(x) = 0^{+}$
(d)
$$\lim_{x \to +\infty} F(x) = +\infty \text{ because } \lim_{x \to +\infty} x^{2} \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to -\infty} x \left[x \ln\left(1 + \frac{1}{x}\right)\right] = +\infty \times 1 = +\infty$$

4. Study of the Variations of u and F :

The function u is increasing on]-1;0[

	U	-	,	L .
$u(x) = \frac{-1}{x+1} \left[1 - (x+1)\ln(x+1) \right]$	1) + (<i>x</i>	+1)	ln(- <i>x</i>
$\lim_{x \to -1^+} u(x) = \lim_{x \to -1^+} \frac{-1}{x+1} (1+0)$	+0×	0)=	<u>–</u> ×	0
$\lim_{x \to 0^{-}} u(x) = \lim_{x \to 0^{-}} 2\ln\left(-1 - \frac{1}{x}\right)$	$-\frac{1}{x+}$	- = · 1	+∞	

)]	x	- ∞	-1		α		0	$+\infty$
ני	Sign [u '(x)]	//////	///		\oplus		/////////////////////////////////////	//////
	Variations & Sign of u(x)	/////// ///////	//// -œ		0 0	≁ +₀ ⊕	o ///////////////////////////////////	///////
	Sgn F'(x)	//////	///	\oplus	0		/////////	///////////////////////////////////////
	Var. of $F(x)$		//// 0	*	М	*	1 /////////	

The function u being continuous and strictly monotonous on]-1; 0[, u(x)

changes of sign in one point only at $x = \alpha = -3$, $u(\alpha) = 0$

 $\text{Sgn}[F'(x)] = -\text{Sgn}[u(x)] \therefore F'(\alpha) = 0 \therefore M = F(\alpha) = 1.1$ is a Maximum. See the above Chart.

5. Study of the limits of F at the ends of the interval]-1:0 [

(a)
$$\lim_{x \to -1^+} F(x) = 0^+$$
 because $\lim_{x \to -1^+} x^2 \ln\left(-1 - \frac{1}{x}\right) = -\infty$, and $\lim_{x \to \infty} [ExpX] = 0^+$
(b) $\lim_{x \to 0^-} F(x) = 1^-$ because $\lim_{x \to 0^-} x^2 \ln\left(\frac{x+1}{-x}\right) = \lim_{x \to 0^-} [x^2 \ln(1+x)] + \lim_{x \to 0^-} [(-x)(-x)\ln(-x)] = 0 \times \ln 1 + 0 = 0$

 $(\lim_{X \to 0^+} [X \ln X] = 0^-)$, then by continuity of Exp, $\lim_{X \to 0} [ExpX] = e^0 = 1$. $\lim_{x \to 0^-} F(x) = 1$ Hence to **extend the function F by continuity** at x = 0 and x = -1 we may fix F(0) = 1 and F(-1) = 0.

6. **Graph of the function** $F(x) = \left|1 + \frac{1}{x}\right|^x$

It's the réunion of the graphs or the two previous functions. The approximate values of the two maximum have been found with a calculator.

The position of the tangent lines at (0;1) and at (-1;0) is a more complicated question that will be studied later.

