Problem II．（6．1）：Let

$$
F(x)=\left(1+\frac{1}{x}\right)^{x^{2}}
$$

1．By definition the function F is composed of the two functions $f(x)=\left(1+\frac{1}{x}\right)$ and $u(x)=x^{2}$ such that $F(x)=\operatorname{Exp}\left[\ln \left[(f(x))^{u(x)}\right]=\operatorname{Exp}(u(x) \ln [f(x)])=e^{u(x) \ln [f(x)]}=e^{x^{2} \ln \left(1+\frac{1}{x}\right)}\right.$
Therefore $f(x)$ must be strictly positive，which means $x<-1$ or $x>0$
2．The derivative of $\mathrm{F}(\mathrm{x})$ is $F^{\prime}(x)=[f(x)]^{u^{(x)}}\left[u^{\prime}(x) \cdot \ln [f(x)]+u(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right] \because \ln [f(x)]=\frac{f^{\prime}(x)}{f(x)}$

$$
F^{\prime}(x)=\left(1+\frac{1}{x}\right)^{x^{2}}\left[2 x \cdot \ln \left(1+\frac{1}{x}\right)+x^{2} \cdot \frac{-\frac{1}{x^{2}}}{\frac{x+1}{x}}\right]=x\left(1+\frac{1}{x}\right)^{x^{2}}\left[2 \ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right]
$$

3． $\operatorname{Sgn}\left[F^{\prime}(x)\right]=\operatorname{Sgn} x\left[2 \ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right]$ for $x<-1$ or $x>0$ ．Let $u(x)=2 \ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}$ $u^{\prime}(x)=2 \frac{-\frac{1}{x^{2}}}{\frac{x+1}{x}}+\frac{1}{(x+1)^{2}}=-\frac{x+2}{x(x+1)^{2}}$ Hence $\mathrm{u}^{\prime}(\mathrm{x})>0$ for $-2<\mathrm{x}<-1$ and $\mathrm{u}^{\prime}(\mathrm{x})<0$ for $\mathrm{x}>0$ or $\mathrm{x}<-2$

4．Study of the Variations of u and F ：

The function u is decreasing on ］－$\infty ;-2$［ $\cup] 0 ;+\infty[$ and increasing on $]-2 ; 0$［， with a minimum $\mathrm{m}=\mathrm{u}(-2)=-0.4<0$ ． $\lim _{x \rightarrow \pm \infty} u(x)=0 \quad \because \ln (1)=0$

$$
\begin{aligned}
& \text { then for } x<-1, \\
& u(x)=\frac{-1}{x+1}(1+(-x-1) \ln (-x-1)+(x+1) \ln (-x)) \\
& \lim _{x \rightarrow-1^{-}} u(x)=\lim _{x \rightarrow-1^{-}} \frac{-1}{x+1}(1+0+0)=+\infty
\end{aligned}
$$

x	－- －	2α	－1 0		$+\infty$	
Sign［u＇（x）］	－ 0	）\oplus	｜｜／／／／／／／／／／／｜	－		
Variations \＆ Sign of $u(x)$				\oplus	0^{+}	
$\operatorname{Sgn} F^{\prime}(x)$	$\oplus 0-\mid / / / / / / / / / / / \\|$			\oplus	0^{+}	
Var．of F（x）	$0^{+} \nrightarrow \mathrm{M} \geq 0^{+}\| \| / / / / / / / / / / /\| \| 1$			π	＋	

$\operatorname{Sgn}\left[F^{\prime}(x)\right]=\operatorname{Sgn}[x . u(x)], u(x)$ changes of sign at $x=\alpha,(-2<\alpha<-1), u(\alpha)=0 \therefore F^{\prime}(\alpha)=0 \therefore \mathrm{M}=\mathrm{F}(\alpha)=0.1$ Max．

5．Study of the limits of F at the ends of the intervals $]-\infty ;-1[\cup] 0 ;+\infty$［

（a） $\lim _{x \rightarrow-1^{-}} F(x)=0^{+}$because $\lim _{x \rightarrow-1^{-}} x^{2} \ln \left(1+\frac{1}{x}\right)=-\infty$ ，and $\lim _{X \rightarrow-\infty}[\operatorname{Exp} X]=0^{+}$
（b） $\lim _{x \rightarrow 0^{+}} F(x)=1^{+}$because $\lim _{x \rightarrow 0^{+}} x^{2} \ln \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}}[x \ln (1+x)]+\lim _{x \rightarrow 0^{+}}[(x \ln x]=0 \times \ln 1+0=0$
$\left(\lim _{X \rightarrow 0^{+}}[X \ln X]=0^{-}\right)$，then by continuity of $\operatorname{Exp}, \lim _{X \rightarrow 0}[\operatorname{Exp} X]=e^{0}=1 \therefore \lim _{x \rightarrow 0^{+}} F(x)=1$
Hence to extend the function \mathbf{F} by continuity at $\mathrm{x}=0$ and $\mathrm{x}=-1$ we may fix $\mathrm{F}(0)=1$ and $\mathrm{F}(-1)=0$ ．
（c） $\lim _{x \rightarrow-\infty} F(x)=0^{+}$because $\lim _{x \rightarrow-\infty} x^{2} \ln \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow-\infty} x\left[x \ln \left(1+\frac{1}{x}\right)\right]=-\infty \times 1=-\infty$
$\because \lim _{x \rightarrow-\infty} x \ln \left(1+\frac{1}{x}\right)=1$ then $\lim _{X \rightarrow-\infty}[\operatorname{Exp} X]=0^{+} \therefore \lim _{x \rightarrow-\infty} F(x)=0^{+}$
（d） $\lim _{x \rightarrow+\infty} F(x)=+\infty$ because $\lim _{x \rightarrow+\infty} x^{2} \ln \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow-\infty} x\left[x \ln \left(1+\frac{1}{x}\right)\right]=+\infty \times 1=+\infty$

Problem II．（6．2）：Let

$$
F(x)=\left(-1-\frac{1}{x}\right)^{x^{2}}
$$

1．By definition the function F is composed of the two functions $f(x)=\left(-1-\frac{1}{x}\right)$ and $u(x)=x^{2}$ such that $F(x)=\operatorname{Exp}\left[\ln \left[(f(x))^{u(x)}\right]=\operatorname{Exp}(u(x) \ln [f(x)])=e^{u(x) \ln [f(x)]}=e^{x^{2} \ln \left(-1-\frac{1}{x}\right)}\right.$

Therefore $f(x)$ must be strictly positive，which means $-1<x<0$
2．The derivative of $\mathrm{F}(\mathrm{x})$ is $F^{\prime}(x)=[f(x)]^{u(x)}\left[u^{\prime}(x) \cdot \ln [f(x)]+u(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right] \quad \because \ln [f(x)]=\frac{f^{\prime}(x)}{f(x)}$

$$
F^{\prime}(x)=\left(-1-\frac{1}{x}\right)^{x^{2}}\left[2 x \cdot \ln \left(-1-\frac{1}{x}\right)+x^{2} \cdot \frac{\frac{1}{x^{2}}}{-\frac{x+1}{x}}\right]=x\left(-1-\frac{1}{x}\right)^{x^{2}}\left[2 \ln \left(-1-\frac{1}{x}\right)-\frac{1}{x+1}\right] \text { for }-1<x<0
$$

3． $\operatorname{Sgn}\left[F^{\prime}(x)\right]=-\operatorname{Sgn}\left[2 \ln \left(-1-\frac{1}{x}\right)-\frac{1}{x+1}\right]$ for $-1<x<0$ ．Let $u(x)=2 \ln \left(-1-\frac{1}{x}\right)-\frac{1}{x+1}$ $u^{\prime}(x)=2 \frac{\frac{1}{x^{2}}}{-\frac{x+1}{x}}+\frac{1}{(x+1)^{2}}=-\frac{x+2}{x(x+1)^{2}}$ Hence $\mathrm{u}^{\prime}(\mathrm{x})>0$ for $-1<\mathrm{x}<0$

4．Study of the Variations of \mathbf{u} and \mathbf{F} ：

The function u is increasing on $]-1 ; 0$［

$$
\begin{aligned}
& u(x)=\frac{-1}{x+1}[1-(x+1) \ln (x+1)+(x+1) \ln (-x)] \\
& \lim _{x \rightarrow-1^{+}} u(x)=\lim _{x \rightarrow-1^{+}} \frac{-1}{x+1}(1+0+0 \times 0)=-\infty \\
& \lim _{x \rightarrow 0^{-}} u(x)=\lim _{x \rightarrow 0^{-}} 2 \ln \left(-1-\frac{1}{x}\right)-\frac{1}{x+1}=+\infty
\end{aligned}
$$

The function u being continuous and
 strictly monotonous on $]-1 ; 0[, \mathrm{u}(\mathrm{x})$ changes of sign in one point only at $\mathrm{x}=\alpha=-.3, \mathrm{u}(\alpha)=0$ $\operatorname{Sgn}\left[F^{\prime}(x)\right]=-\operatorname{Sgn}[u(x)] \therefore F^{\prime}(\alpha)=0 \therefore \mathrm{M}=\mathrm{F}(\alpha)=1.1$ is a Maximum．See the above Chart．
5．Study of the limits of \mathbf{F} at the ends of the interval $]-1: 0$［
（a） $\lim _{x \rightarrow-1^{+}} F(x)=0^{+}$because $\lim _{x \rightarrow-1^{+}} x^{2} \ln \left(-1-\frac{1}{x}\right)=-\infty$ ，and $\lim _{X \rightarrow-\infty}[\operatorname{Exp} X]=0^{+}$
（b） $\lim _{x \rightarrow 0^{-}} F(x)=1^{-}$because $\lim _{x \rightarrow 0^{-}} x^{2} \ln \left(\frac{x+1}{-x}\right)=\lim _{x \rightarrow 0^{-}}\left[x^{2} \ln (1+x)\right]+\lim _{x \rightarrow 0^{-}}[(-x)(-x) \ln (-x)]=0 \times \ln 1+0=0$
$\left(\lim _{X \rightarrow 0^{+}}[X \ln X]=0^{-}\right)$，then by continuity of $\operatorname{Exp}, \lim _{X \rightarrow 0^{-}}[\operatorname{Exp} X]=e^{0}=1 \therefore \lim _{x \rightarrow 0^{-}} F(x)=1$
Hence to extend the function F by continuity at $x=0$ and $x=-1$ we may fix $\mathrm{F}(0)=1$ and $\mathrm{F}(-1)=0$ ．
6．Graph of the function $F(x)=\left|1+\frac{1}{x}\right|^{x^{2}}$
It＇s the réunion of the graphs or the two previous functions． The approximate values of the two maximum have been found with a calculator．
The position of the tangent lines at $(0 ; 1)$ and at $(-1 ; 0)$ is a more complicated question that will be studied later．

