

## Problem II.(5.1) : Let

 $F(x) = \left(1 - \frac{1}{x}\right)^{2x}$ 1. By definition the function F is composed of the two functions  $f(x) = \left(1 - \frac{1}{x}\right)$  and u(x) = 2x

such that 
$$F(x) = Exp\left[\ln[(f(x))^{u(x)}] = Exp(u(x)\ln[f(x)]) = e^{u(x)\ln[f(x)]} = e^{2x\ln[1-\frac{1}{x}]}\right]$$

Therefore f(x) must be strictly positive, which means that x < 0 or x > 1

2. The derivative of F(x) is 
$$F'(x) = [f(x)]^{u(x)} \left[ u'(x) . \ln[f(x)] + u(x) . \frac{f'(x)}{f(x)} \right] \quad \because \ln'[f(x)] = \frac{f'(x)}{f(x)}$$
  
 $F'(x) = \left(1 - \frac{1}{x}\right)^{2x} \left[ 2 . \ln\left(1 - \frac{1}{x}\right) + 2x . \frac{\frac{1}{x^2}}{\frac{x-1}{x}} \right] = 2\left(1 - \frac{1}{x}\right)^{2x} \left[ \ln\left(1 - \frac{1}{x}\right) + \frac{1}{x-1} \right]$   
3.  $Sgn[F'(x)] = Sgn\left[ \ln\left(1 - \frac{1}{x}\right) + \frac{1}{x-1} \right]$  for x < 0 or x > 1. Let u(x) =  $\ln\left(1 - \frac{1}{x}\right) + \frac{1}{x-1}$ 

$$u'(x) = \frac{\frac{1}{x^2}}{\frac{x-1}{x}} - \frac{1}{(x-1)^2} = -\frac{1}{x(x-1)^2}$$

Hence 
$$u'(x) > 0$$
 for  $x < 0$  and  $u'(x) < 0$  for  $x > 1$ 

4. Study of the Variations of F : The function u is increasing on ]- $\infty$ ; 0 [ and decreasing on ] 1;  $+\infty$  [, but the limits of u(x) at  $\pm \infty$  are 0<sup>+</sup> (because ln1 = 0); hence u(x) is always Positive on ]- $\infty$ ; 0 [  $\cup$  ] 1 ; + $\infty$  [, this proves that the function F is increasing on both intervals ]- $\infty$ ; 0 [ and ] 1; + $\infty$  [.

| x                            | - ∞             |               | 0 1                                       |          | $+\infty$       |
|------------------------------|-----------------|---------------|-------------------------------------------|----------|-----------------|
| Sign [uʻ(x)]                 |                 | $\oplus$      | ///////                                   |          |                 |
| Variations &<br>Sign of u(x) | $0^+$           | <b>⊁</b><br>⊕ | <i>////////</i>   <br> ////////           | <b>≻</b> | $0^+$           |
| Var. of F(x)                 | e <sup>-2</sup> | *             | 1 <sup>-</sup>   //////    0 <sup>+</sup> | х        | e <sup>-2</sup> |

5. Study of the limits at the ends of the intervals 
$$]-\infty$$
; 0 [U] 1; + $\infty$  [

$$(a) \lim_{x \to 0^{-}} F(x) = 1 \text{ because } \lim_{x \to 0^{-}} x \ln\left(1 - \frac{1}{x}\right) = \lim_{x \to 0^{-}} [x \ln(1 - x) + (-x)\ln(-x)] \quad (x < 0)$$
  
= 
$$\lim_{x \to 0^{-}} [x \ln(1 - x)] + \lim_{x \to 0^{-}} [(-x)\ln(-x)] = 0 \times \ln 1 + 0 = 0 \quad (See \ later \ that \ \lim_{x \to 0^{+}} [X \ln X] = 0^{-})$$
  
Then by continuity of the Exp. function 
$$\lim_{x \to 0} [ExpX] = e^{0} = 1 \therefore \lim_{x \to 0^{-}} F(x) = 1$$
  
$$(b) \lim_{x \to 1^{+}} F(x) = 0 \quad \text{because } \lim_{x \to 1^{+}} x \ln\left(1 - \frac{1}{x}\right) = -\infty \quad (x > 1) \ and \ \lim_{x \to \infty} [ExpX] = 0^{+} \therefore \lim_{x \to 1^{+}} F(x) = 0^{+}$$

Hence to extend the function **F** by continuity at x = 0 and x = 1 we may fix F(0) = 1 and F(1) = 0.  $\begin{pmatrix} 1 \end{pmatrix}$ 

$$(c) \lim_{x \to \pm \infty} F(x) = \frac{1}{e^2} \text{ because } \lim_{x \to \pm \infty} x \ln\left(1 - \frac{1}{x}\right) = \lim_{x \to \pm \infty} -\frac{\ln\left(1 + \frac{1}{(-x)}\right)}{\frac{1}{(-x)}} = -\lim_{x \to 0^{\pm}} \frac{\ln(1 + x)}{x} = -\ln'(1) = -\frac{1}{1} = -1$$

 $\therefore \lim_{x \to \pm \infty} F(x) = \lim_{x \to \pm \infty} Exp 2x \ln\left(1 - \frac{1}{x}\right) = Exp(-2) = e^{-2} = \frac{1}{e^2} \approx 0.14 \quad (\therefore a \text{symptote} : y = \frac{1}{e^2} \text{ in } +\infty \text{ and in } -\infty)$ 



Problem II.(5.2) : Let  

$$F(x) = \left(\frac{1}{x} - 1\right)^{2x}$$
6. By definition the function F is composed of the two functions  $f(x) = \left(\frac{1}{x} - 1\right)$  and  $u(x) = 2x$   
such that  $F(x) = Exp\left[\ln[(f(x))^{u(x)}] = Exp(u(x)\ln[f(x)]) = e^{u(x)\ln[f(x)]} = e^{2x\ln(\frac{1}{x} - 1)}\right]$   
Therefore  $f(x)$  must be strictly positive, which means that  $0 < x < 1$   
7. The derivative of F(x) is  $F'(x) = [f(x)]^{u(x)} \left[u'(x).\ln[f(x)] + u(x).\frac{f'(x)}{f(x)}\right] \quad \because \ln'[f(x)] = \frac{f'(x)}{f(x)}$   
 $F'(x) = \left(\frac{1}{x} - 1\right)^{2x} \left[2.\ln(\frac{1}{x} - 1) + 2x.\frac{-\frac{1}{x^2}}{\frac{1-x}{x}}\right] = 2\left(\frac{1}{x} - 1\right)^{2x} \left[\ln(\frac{1}{x} - 1) - \frac{1}{1-x}\right]$   
8.  $Sgn[F'(x)] = Sgn\left[\ln(\frac{1}{x} - 1) - \frac{1}{1-x}\right]$  for  $0 < x < 1$ . Let  $u(x) = \ln(\frac{1}{x} - 1) - \frac{1}{1-x}$   
 $u'(x) = \frac{-\frac{1}{x^2}}{\frac{1-x}{x}} - \frac{1}{(x-1)^2} = -\frac{1}{x(x-1)^2}$  Hence  $u'(x) < 0$  for  $0 < x < 1$ 

9. Study of the Variations of F : The function u is decreasing on ] 0; 1 [, but the limits of u(x) in 0<sup>+</sup> is +∞; and is -∞ in 1<sup>-</sup>. Hence the function u changes sign in one point a, on ] 0; 1 [. This proves that the function F is increasing on ]0; a] and decreasing on ] a; 1 [, with a maximum m = f(a).

| x                            | - ∞                                    | 0                          | а   | 1                             | $+\infty$                               |
|------------------------------|----------------------------------------|----------------------------|-----|-------------------------------|-----------------------------------------|
| Sign [uʻ(x)]                 | ///////                                | ////                       |     | /////                         | /////////////////////////////////////// |
| Variations &<br>Sign of u(x) | ////////////////////////////////////// | ////  + ∞<br>////        € | ► 0 | - ∞  ////<br>  ////           | /////////////////////////////////////// |
| Var. of $F(x)$               | ///////                                | /////   1+→                | m   | <b>∽</b> 0 <sup>+</sup>   /// | /////////////////////////////////////// |

## 10. Study of the limits at the ends of the interval ] 0 ; 1 [

 $(a) \lim_{x \to 0^+} F(x) = 1 \text{ because } \lim_{x \to 0^+} x \ln\left(\frac{1}{x} - 1\right) = \lim_{x \to 0^+} [x \ln(1 - x) - x \ln(x)] \quad (0 < x < 1)$  $= \lim_{x \to 0^+} [x \ln(1 - x)] - \lim_{x \to 0^+} [x \ln x] = 0 \times \ln 1 - 0^- = 0^+ \quad (\lim_{x \to 0^+} [X \ln x] = 0^-)$ 

Then by continuity of the Exp. function  $\lim_{X \to 0} [ExpX] = e^0 = 1$ .  $\lim_{x \to 0^+} F(x) = 1$ 

$$(b) \lim_{x \to 1^{-}} F(x) = 0 \text{ because } \lim_{x \to 1^{-}} x \ln\left(\frac{1}{x} - 1\right) = -\infty \ (0 < x < 1) \ and \lim_{x \to -\infty} [ExpX] = 0^{+} \therefore \lim_{x \to 1^{-}} F(x) = 0^{+}$$

## 11. Graph of the function $F(x) = \begin{vmatrix} -\pi \\ x \end{vmatrix}$

It's the réunion of the graphs or the two previous function functions.

The approximate values of a and m = F(a), can be determined with a calulator. The position of the tangent lines at (0;1) and at (1;0) is a more complicated question that will be studied later ...

