Problem II．（5．1）：Let

$$
F(x)=\left(1-\frac{1}{x}\right)^{2 x}
$$

1．By definition the function F is composed of the two functions $f(x)=\left(1-\frac{1}{x}\right)$ and $u(x)=2 x$ such that $F(x)=\operatorname{Exp}\left[\ln \left[(f(x))^{u(x)}\right]=\operatorname{Exp}(u(x) \ln [f(x)])=e^{u(x) \ln [f(x)]}=e^{2 x \ln \left(1-\frac{1}{x}\right)}\right.$

Therefore $f(x)$ must be strictly positive，which means that $x<0$ or $x>1$
2．The derivative of $\mathrm{F}(\mathrm{x})$ is $F^{\prime}(x)=[f(x)]^{u(x)}\left[u^{\prime}(x) \cdot \ln [f(x)]+u(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right] \quad \because \ln [f(x)]=\frac{f^{\prime}(x)}{f(x)}$

$$
F^{\prime}(x)=\left(1-\frac{1}{x}\right)^{2 x}\left[2 \cdot \ln \left(1-\frac{1}{x}\right)+2 x \cdot \frac{\frac{1}{x^{2}}}{\frac{x-1}{x}}\right]=2\left(1-\frac{1}{x}\right)^{2 x}\left[\ln \left(1-\frac{1}{x}\right)+\frac{1}{x-1}\right]
$$

3． $\operatorname{Sgn}\left[F^{\prime}(x)\right]=\operatorname{Sgn}\left[\ln \left(1-\frac{1}{x}\right)+\frac{1}{x-1}\right]$ for $\mathrm{x}<0$ or $\mathrm{x}>1$ ．Let $\mathrm{u}(\mathrm{x})=\ln \left(1-\frac{1}{x}\right)+\frac{1}{x-1}$

$$
u^{\prime}(x)=\frac{\frac{1}{x^{2}}}{\frac{x-1}{x}}-\frac{1}{(x-1)^{2}}=-\frac{1}{x(x-1)^{2}} \quad \text { Hence } \mathrm{u}^{\prime}(\mathrm{x})>0 \text { for } \mathrm{x}<0 \text { and } \mathrm{u}^{\prime}(\mathrm{x})<0 \text { for } \mathrm{x}>1
$$

4．Study of the Variations of F ： The function u is increasing on ］－$\infty ; 0$［ and decreasing on ］ $1 ;+\infty$［，but the limits of $u(x)$ at $\pm \infty$ are 0^{+}（because $\ln 1=$ 0 ）；hence $u(x)$ is always Positive on $]-\infty$ ； 0 ［ $\cup] 1 ;+\infty$［，this proves that the function F is increasing on both intervals ］$-\infty$ ； 0 ［ and ］ $1 ;+\infty$［．

x	$-\infty$		0	1		$+\infty$		
Sign $\left[u^{\prime}(x)\right]$		\oplus	$\\|/ / / / / / / / / / /\\|$	-				
Variations \＆		\nearrow	$\\|/ / / / / / / / / /\\|$	\searrow				
Sign of $u(x)$	0^{+}	\oplus	$\mid / / / / / / / / / / \\|$	\oplus	0^{+}			
Var．of $F(x)$	e^{-2}	\nearrow	$1^{-} \mid / / / / / / / / / / / / / \\|$	0^{+}	\nearrow	e^{-2}		

5．Study of the limits at the ends of the intervals $]-\infty ; 0[\cup] 1 ;+\infty$［
（a） $\lim _{x \rightarrow 0^{-}} F(x)=1$ because $\lim _{x \rightarrow 0^{-}} x \ln \left(1-\frac{1}{x}\right)=\lim _{x \rightarrow 0^{-}}[x \ln (1-x)+(-x) \ln (-x)] \quad(x<0)$
$=\lim _{x \rightarrow 0^{-}}[x \ln (1-x)]+\lim _{x \rightarrow 0^{-}}[(-x) \ln (-x)]=0 \times \ln 1+0=0 \quad$（See later that $\lim _{X \rightarrow 0^{+}}[X \ln X]=0^{-}$）
Then by continuity of the Exp．function $\lim _{X \rightarrow 0}[\operatorname{Exp} X]=e^{0}=1 \therefore \lim _{x \rightarrow 0^{-}} F(x)=1$
（b） $\lim _{x \rightarrow 1^{+}} F(x)=0$ because $\lim _{x \rightarrow 1^{+}} x \ln \left(1-\frac{1}{x}\right)=-\infty(x>1)$ and $\lim _{X \rightarrow-\infty}[\operatorname{Exp} X]=0^{+} \therefore \lim _{x \rightarrow 1^{+}} F(x)=0^{+}$
Hence to extend the function \mathbf{F} by continuity at $\mathrm{x}=0$ and $\mathrm{x}=1$ we may fix $\mathrm{F}(0)=1$ and $\mathrm{F}(1)=0$ ．
（c） $\lim _{x \rightarrow \pm \infty} F(x)=\frac{1}{e^{2}}$ because $\lim _{x \rightarrow \pm \infty} x \ln \left(1-\frac{1}{x}\right)=\lim _{x \rightarrow \pm \infty}-\frac{\ln \left(1+\frac{1}{(-x)}\right)}{\frac{1}{(-x)}}=-\lim _{X \rightarrow 0^{ \pm}} \frac{\ln (1+X)}{X}=-\ln ^{\prime}(1)=-\frac{1}{1}=-1$
$\therefore \lim _{x \rightarrow \pm \infty} F(x)=\lim _{x \rightarrow \pm \infty} \operatorname{Exp} 2 x \ln \left(1-\frac{1}{x}\right)=\operatorname{Exp}(-2)=e^{-2}=\frac{1}{e^{2}} \simeq 0.14 \quad\left(\therefore\right.$ asymptote $: \mathrm{y}=\frac{1}{e^{2}}$ in $+\infty$ and in－$\left.\infty\right)$

Problem II．（5．2）：Let

$$
F(x)=\left(\frac{1}{x}-1\right)^{2 x}
$$

6．By definition the function F is composed of the two functions $f(x)=\left(\frac{1}{x}-1\right)$ and $u(x)=2 x$
such that $F(x)=\operatorname{Exp}\left[\ln \left[(f(x))^{u(x)}\right]=\operatorname{Exp}(u(x) \ln [f(x)])=e^{u(x) \ln [f(x)]}=e^{2 x \ln \left(\frac{1}{x}-1\right)}\right.$
Therefore $f(x)$ must be strictly positive，which means that $0<x<1$
7．The derivative of $\mathrm{F}(\mathrm{x})$ is $F^{\prime}(x)=[f(x)]^{u(x)}\left[u^{\prime}(x) \cdot \ln [f(x)]+u(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right] \quad \because \ln [f(x)]=\frac{f^{\prime}(x)}{f(x)}$

$$
F^{\prime}(x)=\left(\frac{1}{x}-1\right)^{2 x}\left[2 . \ln \left(\frac{1}{x}-1\right)+2 x \cdot \frac{-\frac{1}{x^{2}}}{\frac{1-x}{x}}\right]=2\left(\frac{1}{x}-1\right)^{2 x}\left[\ln \left(\frac{1}{x}-1\right)-\frac{1}{1-x}\right]
$$

8． $\operatorname{Sgn}\left[F^{\prime}(x)\right]=\operatorname{Sgn}\left[\ln \left(\frac{1}{x}-1\right)-\frac{1}{1-x}\right]$ for $0<x<1$ ．Let $u(x)=\ln \left(\frac{1}{x}-1\right)-\frac{1}{1-x}$ $u^{\prime}(x)=\frac{-\frac{1}{x^{2}}}{\frac{1-x}{x}}-\frac{1}{(x-1)^{2}}=-\frac{1}{x(x-1)^{2}}$

Hence $\mathbf{u}^{\prime}(\mathbf{x})<\mathbf{0}$ for $\mathbf{0}<\mathbf{x}<\mathbf{1}$

9．Study of the Variations of F ： The function u is decreasing on $] 0 ; 1[$ ， but the limits of $u(x)$ in 0^{+}is $+\infty$ ；and is $-\infty$ in 1^{-}．Hence the function u changes sign in one point a，on ］ $0 ; 1$［． This proves that the function F is increasing on 10 ；a］and decreasing on ］a ； 1 ［，with a maximum $m=f(a)$ ．

10．Study of the limits at the ends of the interval ］ $0 ; 1$［

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 0^{+}} F(x)=1 \text { because } \lim _{x \rightarrow 0^{+}} x \ln \left(\frac{1}{x}-1\right)=\lim _{x \rightarrow 0^{+}}[x \ln (1-x)-x \ln (x)] \quad(0<x<1) \\
& =\lim _{x \rightarrow 0^{+}}[x \ln (1-x)]-\lim _{x \rightarrow 0^{+}}[x \ln x]=0 \times \ln 1-0^{-}=0^{+} \quad\left(\lim _{X \rightarrow 0+}[X \ln X]=0^{-}\right)
\end{aligned}
$$

Then by continuity of the Exp．function $\lim _{X \rightarrow 0}[\operatorname{Exp} X]=e^{0}=1 \therefore \lim _{x \rightarrow 0+} F(x)=1$
（b） $\lim _{x \rightarrow 1^{-}} F(x)=0$ because $\lim _{x \rightarrow 1^{-}} x \ln \left(\frac{1}{x}-1\right)=-\infty(0<x<1)$ and $\lim _{X \rightarrow-\infty}[\operatorname{Exp} X]=0^{+} \therefore \lim _{x \rightarrow 1^{-}} F(x)=0^{+}$

11．Graph of the function $F(x)=\left|\frac{1}{x}-1\right|^{2 x}$

It＇s the réunion of the graphs or the two previous function functions．
The approximate values of a and $\mathrm{m}=\mathrm{F}(\mathrm{a})$ ，can be determined with a calulator． The position of the tangent lines at $(0 ; 1)$ and at $(1 ; 0)$ is a more complicated question that will be studied later．．．

