Derivative of Composite functions

I – Review of the main formulas :

If u and v are two functions having derivatives u' and v' on the same Interval I = (a;b) then

<i>f</i> =	u + v	k.u	u.v	u^n ($n \in N$)	$\frac{1}{u}$ ($u \neq 0$)	$\frac{u}{v}$ (v≠0)	$\frac{\sqrt{u}}{(u > 0)}$	Exp x	ln x (x >0)	sin x
f' =	<i>u</i> '+ <i>v</i> '	k.u'	u'v + uv'	$n.u^{n-1}u'$	$-\frac{u'}{u^2}$	$\frac{u'v - uv'}{v^2}$	$\frac{u'}{2\sqrt{u}}$	Exp x	$\frac{1}{x}$	cos x

II – Composite functions formula :

- Let the function u have a derivative u' on I = (a;b)
- Let f be a function having a derivative f' on $J = u[\langle I \rangle] = (a';b')$,
- Let $F = f \circ u$ that is to say F(x) = f[u(x)],

Then
$$F'(x) = f'[u(x)] \cdot u'(x) \quad x \in I = (a;b)$$

III – Derivative of the reciproqual function :

$$f[f'(x)] = x \implies (f^{-1})'(x) = \frac{1}{f'[f^{-1}(x)]}$$

IV – Applications :

- 1. Derivative of *Exp[u(x)]* :
- 2. Derivative of ln[u(x)]:
- 3. Derivative of $f(x) = u^k(x)$:

$$(\ln[u(x)])' = \frac{u'(x)}{u(x)} \quad [with \ u(x) > 0]$$
$$[u^{k}(x)]' = k. \ u^{k-1}(x). \ u'(x) \quad for \ any \ k \neq -1$$

4. Derivative of
$$F(x) = f(x)^{u(x)}$$
; $[f(x) > 0]$ $F'(x) = [f(x)]^{u(x)} \left[u'(x) \cdot \ln[f(x)] + u(x) \cdot \frac{f'(x)}{f(x)} \right]$

5. Derivative of Sin[u(x)]: sin'[u(x)] = u'(x).cos[u(x)]

V – Exercises : Calculate the derivative of the following functions

(specify the Intervals of definition of these derivatives, then study the variations and graph the function)

(1)
$$f(x) = \ln \frac{x-1}{x+1}$$
; (2) $f(x) = \ln \frac{e^x - 1}{e^x + 1}$
(3) $f(x) = \frac{1}{\sqrt{x^2 + 1}}$; (4) $f(x) = \sqrt{\frac{x^2 - 1}{x^2 + 1}}$
(5) $f(x) = \left(1 - \frac{1}{x}\right)^{2x}$; (6) $f(x) = \left(1 + \frac{1}{x}\right)^{x^2}$
(7) $f(x) = \sin[\sin(\frac{\pi}{2} - x)]$; (8) $f(x) = \tan\frac{1}{x}$

