Derivative of Composite functions

I - Review of the main formulas :

If u and v are two functions having derivatives u ' and v ' on the same Interval $I=(a ; b)$ then

$f=$	$u+v$	$k \cdot u$	$u \cdot v$	u^{n} $(n \in N)$	$\frac{1}{u}$ $(u \neq 0)$	$\frac{u}{v}$ $(v \neq 0)$	\sqrt{u} $(u>0)$	$\operatorname{Exp} x$	$\ln x$ $(x>0)$	$\sin x$
$f^{\prime}=$	$u^{\prime}+v^{\prime}$	$k \cdot u^{\prime}$	$u^{\prime} v+u v^{\prime}$	$n \cdot u^{n-1} u^{\prime}$	$-\frac{u^{\prime}}{u^{2}}$	$\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$	$\frac{u^{\prime}}{2 \sqrt{u}}$	$\operatorname{Exp} x$	$\frac{1}{x}$	$\cos x$

II - Composite functions formula :

- Let the function u have a derivative u' on $I=(a ; b)$
- Let f be a function having a derivative f^{\prime} on $\left.J=u[<I\rangle\right]=\left(a^{\prime} ; b^{\prime}\right)$,
- Let $F=f \circ u$ that is to say $F(x)=f[u(x)]$,

Then

$$
\boldsymbol{F}^{\prime}(\boldsymbol{x})=\boldsymbol{f}^{\prime}[\boldsymbol{u}(\boldsymbol{x})] \cdot \boldsymbol{u}^{\prime}(\boldsymbol{x}) \quad x \in I=(a ; b)
$$

III - Derivative of the reciproqual function :

$$
f\left[f^{1}(x)\right]=x=>\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left[f^{-1}(x)\right]}
$$

IV - Applications :

1. Derivative of $\operatorname{Exp}[u(x)]$:

$$
\left[e^{u(x)}\right]^{\prime}=e^{u(x)} u^{\prime}(x)
$$

2. Derivative of $\ln [u(x)]$:

$$
(\ln [u(x)])^{\prime}=\frac{u^{\prime}(x)}{u(x)} \quad[\text { with } u(x)>0]
$$

3. Derivative of $\mathbf{f}(\mathbf{x})=\mathbf{u}^{k}(\mathbf{x}): \quad\left[u^{k}(x)\right]^{\prime}=k . u^{k-1}(x) \cdot u^{\prime}(x)$ for any $k \neq-1$
4. Derivative of $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})^{u(x)} ; \quad[\boldsymbol{f}(\boldsymbol{x})>0] \quad \boldsymbol{F}^{\prime}(x)=[f(x)]^{u(x)}\left[u^{\prime}(x) \cdot \ln [f(x)]+u(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right]$
5. Derivative of $\operatorname{Sin}[u(x)]: \quad \sin ^{\prime}[u(x)]=u^{\prime}(x) \cdot \cos [u(x)]$
\mathbf{V} - Exercises: Calculate the derivative of the following functions
(specify the Intervals of definition of these derivatives, then study the variations and graph the function)
(1) $f(x)=\ln \frac{x-1}{x+1} \quad$;
(2) $f(x)=\ln \frac{e^{x}-1}{e^{x}+1}$
(3) $f(x)=\frac{1}{\sqrt{x^{2}+1}}$;
(4) $f(x)=\sqrt{\frac{x^{2}-1}{x^{2}+1}}$
(5) $f(x)=\left(1-\frac{1}{x}\right)^{2 x}$;
(6) $f(x)=\left(1+\frac{1}{x}\right)^{x^{2}}$
(7) $f(x)=\sin \left[\sin \left(\frac{\pi}{2}-x\right)\right]$;
(8) $f(x)=\tan \frac{1}{x}$
