\qquad Grade jiguanglaoshi@gmail.com

Senior 1.4 - TEST [B] - May $27^{\text {th }}-60 \mathrm{~min}$.

Recurrence in Sequences \& Series

I. The turtle and the dog

 D <
 100 m
 \qquad T

The $\operatorname{dog}(\mathrm{D})$ runs 10 times faster than the turtle (T). They start at a distance of 100 m . but every time the dog runs the distance between him and the turtle, the turtle continues to walk ... therefore the distance left between them is 10 m , and so on....

Let d_{0} be the initial distance between D and T ,
Let d_{1} be the distance left between D and T after the first run,
Let d_{n} the distance left between D and T the after the $\mathrm{n}^{\text {th }}$ run

1. Write the relation ship between d_{n} and $\mathrm{d}_{\mathrm{n}+1}$:

1 pt
2 pts

2 pts
7. Graph the function f and the construction of the sequence

\qquad Grade : \qquad jiguanglaoshi@gmail.com

Senior 1.4 - TEST [B] - May $27^{\text {th }}-60 \mathrm{~min}$.

III. Adjacent Sequences and approximation of the square root of a number

Let f be defined by $f(x)=\frac{x+5}{x+1}$ and the sequence $\left(x_{\mathrm{n}}\right)$ defined by $x_{n+1}=f\left(x_{n}\right)$ with $x_{0}=1$
We are going to study two different methods to find the limit of this sequence :

1. First method :
a. Prove by recurrence that for any $n \geq 0,1 \leq x_{n} \leq 3$
b. Show that for any $\mathrm{n} \geq 0$,

$$
\left|x_{n}-\sqrt{5}\right| \leq q\left|x_{n-1}-\sqrt{5}\right| \text { with } q=\frac{2}{1+\sqrt{5}}
$$

c. Prove by recurrence that for any $\mathrm{n} \geq 0$, $0 \leq\left|x_{n}-\sqrt{5}\right| \leq 2 . q^{n}$
d. Explain what is the limit of $\left(x_{\mathrm{n}}\right)$
e. Show the construction on the graph $==>$

2. Second method : using the variations of the function f and $g=f \circ f$, with $u_{\mathrm{n}}=x_{2 \mathrm{n}}=g\left(u_{n-1}\right)$ and $v_{\mathrm{n}}=x_{2 \mathrm{n}+1}=g\left(v_{n-1}\right)$
a. Explain why g is an increasing function on $[0 ;+\infty[$ and calculate $g(x)=f[f(x)]$.
b. Prove by recurrence that the sequence $\left(u_{n}\right)$ is increasing (we admit that $\left(v_{n}\right)$ is decreasing)
c. Show that for any $\mathrm{n} \geq 0,\left|v_{n+1}-u_{n+1}\right| \leq \frac{1}{4}\left|v_{n}-u_{n}\right|$
d. Prove by recurrence that for any $\mathrm{n} \geq 0,\left|v_{n}-u_{n}\right| \leq 2\left(\frac{1}{4}\right)^{n}$
e. Explain why the two sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are adjacent
f. Show what is the common limit of $\left(u_{n}\right),\left(v_{n}\right)$ and $\left(x_{n}\right)$.
g. Use u_{3} and v_{3} to give an approximate value of $\sqrt{ } 5$.

