<u>http://beijingshanmaths.org</u> Name : jiguanglaoshi@gmail.com ______. *Grade* : ______ Senior 1.4 – TEST [B] - May 27th – 60 min.

June 1, 2011

<u>http://beijingshanmaths.org</u> Name : [jiguanglaoshi@gmail.com

. *Grade* : Senior 1.4 – TEST [B] - May 27th – 60 min.

III.	Adjacent Sequences and approximation of the	square root of a number	
]	Let f be defined by $f(x) = \frac{x+5}{x+1}$ and the sequence (a)	x_n) defined by $x_{n+1} = f(x_n)$ with $x_0 = 1$	
1.	We are going to study two different methods to find the limit of this sequence :		
1	b. Show that for any $n \ge 0$,		
	$\left x_{n} - \sqrt{5}\right \le q \left x_{n-1} - \sqrt{5}\right $ with $q = \frac{2}{1 + \sqrt{5}}$		
(2. <u>Prove by recurrence</u> that for any n≥ 0, $0 \le x_n - \sqrt{5} \le 2.q^n$	4 y 3	
	$0 \leq x_n - \sqrt{3} \leq 2.4$	2	
(d. Explain what is the limit of (x_n)		5
(e. Show the construction on the graph ==>		∠ pis
2. Second method : using the variations of the function f and $g = f \circ f$, with $u_n = x_{2n} = g(u_{n-1})$			
ä	and $v_n = x_{2n+1} = g(v_{n-1})$ a. Explain why <i>g</i> is an increasing function on [0; +∞[and calculate $g(x) = f[f(x)]$.		
1	b. <u>Prove by recurrence</u> that the sequence (u_n) is increasing (we admit that (v_n) is decreasing)		2 pts
(c. Show that for any $n \ge 0$, $ v_{n+1} - u_{n+1} \le \frac{1}{4} v_n - u_n $		2 pts
(d. <u>Prove by recurrence</u> that for any $n \ge 0$, $ v_n - u_n \le 2\left(\frac{1}{4}\right)^n$		2 pts
Ć	e. Explain why the two sequences (u_n) and (v_n) are <u>adjacent</u>		1 pt
t	f. Show what is the common limit of (u_n) , (v_n) and (x_n) .		1 pt
ž	g. Use u_3 and v_3 to give an approximate value of $\sqrt{5}$.		1pt
			1