Recurrence in Sequences \& Series

The $\operatorname{dog}(\mathrm{D})$ runs 10 times faster than the turtle (T). They start at a distance of 100 m . but every time the dog runs the distance between him and the turtle, the turtle continues to walk ... therefore the distance left between them is 10 m , and so on....

Let d_{0} be the initial distance between D and T ,
Let d_{1} be the distance left between D and T after the first run,
Let d_{n} the distance left between D and T the after the $\mathrm{n}^{\text {th }}$ run

1. Relationship between d_{n} and d_{n+1} :
$d_{n+1}=\frac{1}{10} d_{n}$ geom. sequ., reason : $q=\frac{1}{10}$
2. Find the total distance run by the dog after the $\mathrm{n}^{\text {th }}$ run :
3. Find the total distance run by the dog to get the turtle

1 pt

$$
S_{n}=\sum_{k=0}^{k=n-1} d_{k}=d_{0} \frac{1-q^{n}}{1-q}=100 \frac{1-\left(\frac{1}{10}\right)^{n}}{1-\frac{1}{10}}=\frac{1000}{9}\left(1-10^{-n}\right) \Rightarrow S=\sum_{n=0}^{\infty} d_{n}=\frac{d_{0}}{1-q}=\frac{100}{1-\frac{1}{10}}=\frac{1000}{9}=111,111 \ldots
$$

Let f be the function defined by $f(x)=\sqrt{1+x},(x>-1)$ and $u_{n+1}=\sqrt{1+u_{n}}$ and $u_{0}=0$

1. Expression of $u_{1}, u_{2}, u_{3}: u_{1}=\sqrt{1}, u_{2}=\sqrt{1+\sqrt{1}}=2, u_{3}=\sqrt{1+\sqrt{1+\sqrt{1}}}=\sqrt{1+\sqrt{2}}$
2. f is increasing on $\left[0 ;+\infty\left[: 0 \leq x_{1} \leq \mathrm{x}_{2} \Rightarrow 1 \leq x_{1}+1 \leq \mathrm{x}_{2}+1 \Rightarrow 1 \leq \sqrt{x_{1}+1} \leq \sqrt{\mathrm{x}_{2}+1} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)\right.\right.$
3. Prove by recurrence that for any $\mathrm{n} \geq 0,0 \leq u_{\mathrm{n}} \leq 2$ [P_{n}]
i. Initialization: $\left[\mathrm{P}_{0}\right] \Leftrightarrow 0 \leq u_{0} \leq 2 \Leftrightarrow 0 \leq 0 \leq 2$ TRUE !
ii. Heredity : $\left[\mathrm{P}_{\mathrm{n}}\right] \Leftrightarrow 0 \leq u_{\mathrm{n}} \leq 2 \Rightarrow$ [f increasing] $f(0) \leq f\left(u_{\mathrm{n}}\right) \leq f(2) \Leftrightarrow 1 \leq u_{\mathrm{n}+1} \leq \sqrt{1+\sqrt{2}} \leq 2 \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]$
4. Prove by recurrence that for any $\mathrm{n} \geq 0, u_{n} \leq u_{\mathrm{n}+1}\left[\mathrm{P}_{\mathrm{n}}\right]$
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow u_{0} \leq \mathrm{u}_{1} \Leftrightarrow 0 \leq 1$ TRUE!
ii.Heredity : $\left[\mathrm{P}_{\mathrm{n}}\right] \Leftrightarrow u_{\mathrm{n}} \leq u_{\mathrm{n}+1} \Rightarrow$ [f increasing] $f\left(u_{\mathrm{n}}\right) \leq f\left(u_{\mathrm{n}+1}\right) \Rightarrow u_{\mathrm{n}+1} \leq u_{\mathrm{n}+2} \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]$
5. Explain why the sequence $\left(u_{\mathrm{n}}\right)$ has a finite limit x.

Because $\left(u_{\mathrm{n}}\right)$ is increasing and has a Majorant $\mathrm{M}=2 \therefore\left(u_{\mathrm{n}}\right)$ has a limit $x \leq \mathrm{M}$
6. How to find the value of x :
$\lim u_{\mathrm{n}}=x$ and $\lim u_{\mathrm{n}+1}=x$
and $\lim f\left(u_{\mathrm{n}}\right)=\mathrm{f}\left(\lim u_{\mathrm{n}}\right)$
$\therefore x=f(x)=\sqrt{x+1}$
$\Leftrightarrow x^{2}-x-1=0(\mathrm{x} \geq 0)$
$\Leftrightarrow x=\frac{1+\sqrt{5}}{2}$ (Fibonacci)
7. Graph the function f and the construction of the sequence

III. Adjacent Sequences and approximation of the square root of a number

Let f be defined by $f(x)=\frac{x+5}{x+1}$ and the sequence $\left(x_{\mathrm{n}}\right)$ defined by $x_{n+1}=f\left(x_{n}\right)$ with $x_{0}=1$
We are going to study two different methods to find the limit of this sequence :
a. First method :
a. Prove by recurrence that for any $n \geq 0,1 \leq x_{n} \leq 3\left[\mathrm{P}_{\mathrm{n}}\right] \quad f(x)=\frac{x+5}{x+1}=1+\frac{4}{x+1} \quad \therefore f$ Decreasing
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow 1 \leq x_{0} \leq 3 \Leftrightarrow 1 \leq 1 \leq 3$ TRUE !
ii. Heredity: $\left[\mathrm{P}_{\mathrm{n}}\right] \Leftrightarrow 1 \leq x_{n} \leq 3 \Rightarrow$ [f DEcreasing] $f(1) \geq$ $f\left(x_{\mathrm{n}}\right) \geq f(3) \Rightarrow 3 \leq x_{\mathrm{n}+1} \geq 2 \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]$
i. For any $\mathrm{n} \geq 0,\left|x_{n}-\sqrt{5}\right| \leq q\left|x_{n-1}-\sqrt{5}\right|$ with $q=\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{2}$

$$
\left|x_{n}-\sqrt{5}\right|=\left|\frac{x_{n-1}+5}{x_{n-1}+1}-\sqrt{5}\right|=\left|\frac{\left(x_{n-1}-\sqrt{5}\right)(1-\sqrt{5})}{x_{n-1}+1}\right|
$$

$\therefore\left|x_{n}-\sqrt{5}\right| \leq \frac{\sqrt{5}-1}{x_{n-1}+1}\left|x_{n-1}-\sqrt{5}\right| \leq \frac{(\sqrt{5}-1)}{2}\left|x_{n-1}-\sqrt{3}\right| \because x_{n-1} \geq 1$
b. Prove by recurrence that for any $\mathrm{n} \geq 0,0 \leq\left|x_{n}-\sqrt{5}\right| \leq 2 q^{n}$ [P_{n}]
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow 0 \leq|1-\sqrt{5}| \leq 2 q^{0}$ TRUE !
ii. Heredity: $\left[\mathrm{P}_{\mathrm{n}}\right] \Leftrightarrow 0 \leq\left|x_{n}-\sqrt{5}\right| \leq 2 q^{n}$

$$
\left|x_{n+1}-\sqrt{5}\right| \leq q\left|x_{n}-\sqrt{5}\right| \Rightarrow\left|x_{n+1}-\sqrt{5}\right| \leq 2 q^{n+1} \Leftrightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]
$$

c. Explain what is the limit of $\left(x_{\mathrm{n}}\right)$
$|\mathrm{q}|<1 \Rightarrow \lim \left|x_{\mathrm{n}}-\sqrt{ } 5\right|=0 \Leftrightarrow \lim x_{\mathrm{n}}=\sqrt{ } 5$
b. 2nd method : using the variations off and $g=f \circ f$, with $u_{\mathrm{n}}=x_{2 \mathrm{n}}=g\left(u_{n-1}\right)$ and $v_{\mathrm{n}}=x_{2 \mathrm{n}+1}=g\left(v_{n-1}\right)$
a. f is DEcreasing on [0; $+\infty$ [and $\therefore g=f \circ f$ is $\mathbf{I N}$ creasing and ${ }_{g(x)=f(f(x))=1+\frac{4}{f(x)+1}=\frac{3 x+5}{x+3}=3-\frac{4}{x+3}, ~}^{\text {a }}$
b. Prove by recurrence that the sequence $\left(u_{n}\right)$ is increasing (we admit that (v_{n}) is decreasing)
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow u_{0} \leq u_{1} \Leftrightarrow 1 \leq 2$ TRUE !
ii. Heredity: $\left[\mathrm{P}_{\mathrm{n}}\right] \Leftrightarrow u_{n} \leq u_{n+1} \Rightarrow$ [g INcreasing] $g\left(u_{n}\right) \leq g\left(u_{n+1}\right) \Rightarrow u_{n+1} \leq u_{n+2} \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]$
c. For $\mathrm{n} \geq 0,\left|v_{n+1}-u_{n+1}\right|=\left|g\left(v_{n}\right)-g\left(u_{n}\right)\right|=\left|\frac{-4}{v_{n}+3}+\frac{4}{u_{n}+3}\right|=\frac{4\left|v_{n}-u_{n}\right|}{\left(v_{n}+3\right)\left(u_{n}+3\right)} \leq \frac{1}{4}\left|v_{n}-u_{n}\right| \because u_{n} \geq 1 \& v_{n} \geq 1$
d. Prove by recurrence that for any $\mathrm{n} \geq 0,\left|v_{n}-u_{n}\right| \leq 2\left(\frac{1}{4}\right)^{n}\left[\mathrm{P}_{\mathrm{n}}\right]$
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow\left|v_{0}-u_{0}\right| \leq 2(0.25)^{0}$ TRUE $\because u_{0}=x_{0}=1 \& v_{0}=x_{1}=f(1)=3$
ii. $\left[\mathrm{P}_{\mathrm{n}+1}\right]\left|v_{n}-u_{n}\right| \leq 2\left(\frac{1}{4}\right)^{n} \&\left|v_{n+1}-u_{n+1}\right| \leq \frac{1}{4}\left|v_{n}-u_{n}\right| \Rightarrow\left|v_{n+1}-u_{n+1}\right| \leq \frac{1}{4} 2\left(\frac{1}{4}\right)^{n} \Rightarrow\left|v_{n+1}-u_{n+1}\right| \leq 2\left(\frac{1}{4}\right)^{n+1} \quad\left[\mathrm{P}_{n+1}\right]$
e. Explain why the two sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are adjacent
$\left(u_{\mathrm{n}}\right) \nearrow_{,}\left(v_{\mathrm{n}}\right) \searrow$ and $\lim \left|v_{\mathrm{n}}-u_{\mathrm{n}}\right|=0 \therefore(|1 / 4|<1) \therefore \lim \left(u_{\mathrm{n}}\right)=\lim \left(v_{\mathrm{n}}\right)=x$
f. Show what is the common limit of $\left(u_{n}\right),\left(v_{n}\right)$ and $\left(x_{n}\right)$.
$\lim \left(u_{\mathrm{n}}\right)=\lim \left(v_{\mathrm{n}}\right)=x \Rightarrow \lim \left(x_{\mathrm{n}}\right)=\lim \left(x_{\mathrm{n}+1}\right)=x$ and $\lim \left(x_{\mathrm{n}+1}\right)=\mathrm{f}\left(\lim \left(x_{\mathrm{n}}\right)\right)$ (because f is continuous)

$$
\therefore x=f(x)=\frac{x+5}{x+1} \Leftrightarrow x^{2}=5(x>0) \Leftrightarrow x=\sqrt{5}
$$

c. Approximate value of $\sqrt{ } 5: u_{3} \leq \sqrt{ } 5 \leq v_{3} \Rightarrow \sqrt{5} \approx \frac{u_{3}+v_{3}}{2}=\frac{2.230+2.238}{2}=1.234 \ldots$ (error less than 10^{-3}).

