<u>http://beijingshanmaths.org</u> Name : jiguanglaoshi@gmail.com

June 1, 2011

<u>http://beijingshanmaths.org</u> Name : [jiguanglaoshi@gmail.com

. *Grade* : Senior 1.4 – TEST [A] - May 27th – 60 min.

III.	Adjacent Sequences and approximation of th	e square root of a number	
L	et f be defined by $f(x) = \frac{x+3}{x+1}$ and the sequence	(x_n) defined by $x_{n+1} = f(x_n)$ with $x_0 = 0$	
W	e are going to study two different methods to find	d the limit of this sequence :	
1. <u>F</u> a.	a. <u>First method</u> : a. <u>Prove by recurrence</u> that for any $n \ge 0$, $0 \le x_n \le 3$		
b.	Show that for any $n \ge 0$, $ x_n - \sqrt{3} \le q x_{n-1} - \sqrt{3} $ with $q = \frac{2}{1 + \sqrt{3}}$		2 pts
		3	
c.	<u>Prove by recurrence</u> that for any $n \ge 0$, $0 \le x_n - \sqrt{3} \le q^n \sqrt{3}$	y	2 pts
d.	Explain what is the limit of (x_n)	1	1 pt
			1
e.	Show the construction on the graph ==>	0 1 2 3	2 pts
2. S	econd method : using the variations of the function	on f and $g = f \circ f$, with $u_n = x_{2n} = g(u_{n-1})$	
	and $v_n = x_{2n+1} = g(v_{n-1})$		
a.	Explain why g is an increasing function on $[0; +\infty]$ and calculate $g(x) = f[f(x)]$.		2 pts
b.	b. <u>Prove by recurrence</u> that the sequence (u_n) is increasing (we admit that (v_n) is decreasing)		
c.	Show that for any $n \ge 0$, $ v_{n+1} - u_{n+1} \le \frac{1}{4} v_n - u_n $,	2 pts
	4		
Ŀ		$(1)^n$	2
a.	<u>Prove by recurrence</u> that for any $n \ge 0$, $ v_n - u_n $	$\leq 3\left(\frac{1}{4}\right)$	2 pts
e.	e. Explain why the two sequences (u_n) and (v_n) are <u>adjacent</u>		1 pt
f.	f. Show what is the common limit of (u_n) , (v_n) and (x_n) .		l pt
			1
g.	. Use u_3 and v_3 to give an approximate value of $\sqrt{3}$.		