Study of some Special Sequences

I. Let $u_{n+1}=\frac{2+u_{n}}{1+u_{n}}$ and $u_{0}=0$

1. Prove that for any $\mathrm{n}>0, \mathrm{u}_{\mathrm{n}}>0$
2. Prove that for any $\mathrm{n} \geq 0 u_{n+1}-\sqrt{2}=\frac{\sqrt{2}-u_{n}}{\left(1+u_{n}\right)(1+\sqrt{2})}$
3. Derive from the above that for any $\mathrm{n} \geq 0\left|u_{n+1}-\sqrt{2}\right| \leq k\left|u_{n}-\sqrt{2}\right|$ with $k=\frac{1}{1+\sqrt{2}}$
4. Prove that for any $\mathrm{n} \geq 0\left|u_{n}-\sqrt{2}\right| \leq k^{n} \sqrt{2}$
5. Prove that the limit of $\left(u_{n}\right)$ is $\sqrt{ } 2$
6. . Graph $\left(\mathrm{u}_{\mathrm{n}}\right)$ on the back of this page.
