Space Geometry : Parallelism \& Orthogonality
 (non metric)

I. Paralell planes: [Theorem]

Two planes (P) and (P^{\prime}) are parallel

if and only if

(P) contains two non parallel lines (D) and (D'), respectively both parallel to (P^{\prime}).

II. Orthogonality of two lines :

[Definition] Two lines (D) and (Δ), not coplanar, are orthogonal if and only if by a point A of (Δ) we can draw a line (D') paralell to (D) and perpendicular to (Δ).

III. Line Perpendicular to a plane :

[Definition] a line (Δ) is perpendicular to a plane (P)

if and only if

(Δ) is orthogonal to (at least) two non parallel lines (D) and (D') of that plane (P).

IV. Theorem : if a line (Δ) is perpendicular to a plane (P) then it is orthogonal to all lines of that plane.

V. Perpendicular planes: [definition]

Two planes are perpendicular
if and only if
one contains a line perpendicular to the other plane [That is a line orthogonal to two non parallel lines in that plane]

VI. Theorem of the $\mathbf{3}$ perpendiculars :

Let (D) be a line included in plane (P) and $A \in(D)$.
From a point S out of the plane (P) we draw a line (Δ) perpendicular in I to the plane (P), then if (IA) is perpendicular to (D) then (SA) is also perpendicular to (D).
Proof : $\left\{\begin{array}{c}(S I) \perp(P) \\ (I A) \perp(D)\end{array}\right\} \Rightarrow\left\{\begin{array}{c}(D) \perp(I S) \\ (D) \perp(I A)\end{array}\right\}$

$$
\Rightarrow(D) \perp(I S A) \Rightarrow(D) \perp(S A)
$$

Reciprocal : If (D) is perpendicular to (SA) and (SI) perpendicular to the plane (P) in I , then (D) is perpendicular to (IA).

$$
\begin{array}{r}
\text { Proof : }\left\{\begin{array}{c}
(S I) \perp(P) \\
(S A) \perp(D)
\end{array}\right\}
\end{array} \Rightarrow\left\{\begin{array}{c}
(D) \perp(S I) \\
(D) \perp(S A)
\end{array}\right\}
$$

