Space Geometry Basic Theorems

(non metric)

I. Preliminary theorems :

a. Preliminary 1: Two planes cannot have one common point without containing a straigth line going through that point.
b. Preliminary 2 : a straight line (D) is parallel to a plane (P) if and only if it is parallel to one line (D') included in (P).
c. Preliminary 3 : if a line (D) is parallel to a plane (P), then any plane (Q) containing (D) cuts (P) on (Δ) parallel to (D).
Proof : Let (Δ) be the interception of (Q) and (P).
Then the lines (D) and (Δ) are in the same plane (Q).
Therefore they are either parallel or intercepting.
 But if (D) would cut (Δ) in a point I, then (D) would not be parallel to the plane (P). Hence $(\Delta) / /(D)$.
II. Theorem of the roof : (D) and (D ') are two parallel lines generating the "horizontal" plane (P). Then if the two planes (Q) containing (D) and (Q') containing (D') intercept in one line (Δ), then (Δ) is parallel to the two lines

(D) and (D^{\prime}) [and hence $\left.(\Delta) / /(\mathrm{P})\right]$.
Proof : from the preliminary theorems :
i. $(D) / /\left(D^{\prime}\right)$ and $\left(D^{\prime}\right) \subset\left(Q^{\prime}\right) \Rightarrow(D) / /\left(Q^{\prime}\right)$;
(D) $\subset(Q) \Rightarrow(Q) \cap\left(Q^{\prime}\right)=\left(\Delta^{\prime}\right) / /(D)$
ii. $\quad\left(D^{\prime}\right) / /(D)$ and $(D) \subset(Q) \Rightarrow\left(D^{\prime}\right) / /(Q)$;
$(D) \subset(Q) \Rightarrow(Q) \cap\left(Q^{\prime}\right)=\left(\Delta^{\prime \prime}\right) / /\left(D^{\prime}\right)$
iii. Let $I \in(Q) \cap\left(Q^{\prime}\right)$, then $I \in\left(\Delta^{\prime}\right)$ and $I \in\left(\Delta^{\prime \prime}\right)$.
iv. $\left(\Delta^{\prime}\right) / /(D)$ and $(D) / /\left(D^{\prime}\right)$ then $\left(\Delta^{\prime}\right) / /\left(D^{\prime}\right)$,
$\therefore\left(\Delta^{\prime}\right) / /\left(D^{\prime}\right)$ and $\left(\Delta^{\prime \prime}\right) / /\left(D^{\prime}\right)$
v. Hence (Δ ') and (Δ '") are one same line because
[From Euclid's axiom] there is only one line going through I and // to (D^{\prime}), therefore the interception line of the two planes (Q) and $\left(Q^{\prime}\right)$ is parallel to the two lines (D) and $\left(D^{\prime}\right)$ (and then to (P).
III.DESARGUES Theorem $\left(\mathrm{XVI}^{\text {th }}\right)$: If $(\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C})$ is a tetraedron (pyramid with 4 sides) of base ABC , and if $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are three points on the edges of that tetraedron, such that the plane ($A^{\prime} B^{\prime} C^{\prime}$) is not parallel to the plane (ABC).
Let $U=(A B) \cap\left(A^{\prime} B^{\prime}\right), V=(B C) \cap\left(B^{\prime} C^{\prime}\right)$, and $W=(C A) \cap\left(C^{\prime} A^{\prime}\right)$.
Then the three points $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are on a same line
Proof: (too easy !) Let (Δ) be the interception line of the two planes $(A B C)$ and ($\left.A^{\prime} B^{\prime} C^{\prime}\right)$, then (Δ) contains all the common points of the two planes : specifically it contains U because $U \in(A B C)) \cap\left(A^{\prime} B^{\prime} C\right)$, and same for V and W.

