Definition ：any list of Numbers written in a certain order is making a Numerical Sequence．We use a special notation to specify each term of the sequence in reference to it＇s rank in the list，this notation is generally $U(n)$ or simply U_{n} ．The index n shows the position of the number in the list．This index is a Natural number： $0,1,2,3, \ldots, n-1, n, n+1, \ldots$ The terms U_{n-1}, U_{n} and U_{n+1} are three following numbers in the sequence．U_{0} represents the initial term of the sequence （index $0=$ initial term）．If the sequence is not defined for $n=0$ ，the sequence starts with U_{1} ．
Examples：（1）Sequence of the numbers obtained by counting 3 by 3 from -5 ：
$(-5,-2,1,4,7, \ldots$,$) the general term of this sequence is U_{n}=-5+3 . n$
The first term is $U_{0}=-5$ ；the $11^{\text {th }}$ term is $U_{10}=-5+3 \times 10=25 ; 100^{\text {sh }}$ term $U_{99}=-5+3 \times 99=292$ ．
（2）Sequence of the numbers obtained by multiplying every previous number by 2 starting with 3：
（3，6，12，24，48，．．．）The general term of that sequence is $V_{n}=3 .(2)^{n}$
First term ：$V_{0}=3 ; 10^{\text {th }}$ term $: V_{9}=3 .(2)^{9}=3 \times 512=1536 ; V_{20}=3 .(2)^{20^{n}}=3 \times 1024^{2}=3145728$ ．
（3）Sequence of the decimals digits of the number $\boldsymbol{\pi}:(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9 \ldots \ldots)$ In this sequence the 10 th term（rank $n=9)$ is 5 ，but there is no simple formula to find it ．．．
（4）Fibonacci sequence ：$(1,1,2,3,5,8,13,21,34, \ldots)$ in this sequence every term is the sum of the two previous ones．We can get as many terms as we want but we cannot get the value of the $100^{\text {th }}$ term without calculating the 99 terms before it，We have ：$U_{n+1}=U_{n}+U_{n-l}$ ，but the formula that would provide the direct value is complicated（see Binet formula on the website）
（5）Sequencce of the squares of the integers ：$(0,1,4,9,16,25,36, \ldots)$ It＇s easy to find that $U_{n}=n^{2}$ and that $U_{100}=100^{2}=10000$ ．
The type（1）sequences are named Arithmetic Sequences，
The type（2）sequences are named Geometric Sequences，
The sequences（3），（4），（5）are neither arithmetic or geometric．

ARITHMETIC Sequence	GEOMETRIC Sequence
Definitions 1	
Every term is obtained by adding the same number r to the previous one（ $\mathrm{r}=$ «reason »） $\mathbf{U}_{\mathbf{n}+1}=\mathbf{U}_{\mathbf{n}}+\mathbf{r}$	Every term is obtained by multiplying each term by the same number $q(q=$ «quotient»） $\mathbf{V}_{\mathrm{n}+1}=\mathbf{q} \cdot \mathbf{V}_{\mathrm{n}}$
Definitions 2	
The difference of two following terms is constant $\mathbf{U}_{\mathbf{n}+1}-\mathbf{U}_{\mathbf{n}}=\mathbf{r}$	The quotient of two following terms is constant $\frac{V_{n+1}}{V_{n}}=q$
General Formulas	
$\begin{aligned} \mathbf{U}_{\mathbf{n}} & =\mathbf{a}+\mathbf{n} . \mathbf{r} \\ 1^{\text {st }} \text { term }: \mathbf{U}_{\mathbf{0}}=\mathbf{a} ; \text { reason } & =\mathbf{r} \quad(\text { ratio }=\text { difference }) \end{aligned}$	$\begin{gathered} \mathbf{V}_{\mathbf{n}}=\mathbf{a} \cdot \mathbf{q}^{\mathbf{n}} \\ 1^{\text {st }} \text { term }: \mathbf{V}_{\mathbf{0}}=\mathbf{a} ; \text { reason }=\mathbf{q}(\text { quotient }=\text { ratio }) \end{gathered}$
Characteristic property \＃ 1	
Every term is the arithmetic mean of the terms which are équidistants from it． $\mathbf{U}_{\mathbf{n}}=\frac{\mathbf{U}_{\mathbf{n}-\mathrm{p}}+\mathbf{U}_{\mathrm{n}+\mathrm{p}}}{2}$	Every term is the quadratic（or geometric）mean of the terms which are équidistants from it． $V_{\mathbf{n}}=\sqrt{V_{\mathbf{n}-\mathbf{p}} \cdot V_{\mathbf{n}+\mathbf{p}}}$
Characteristic property \＃ 2	
Variation of Linear type	Variation of Exponential type

