Exercises of Proof by Recurrence

I. Let (P_n) be the formula
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

- 1. Intitialization : check that (P_1) is TRUE :
- 2. Heredity : prove that for any given $k \ge 1$ the <u>implication</u> $(P_k) \Rightarrow (P_{k+1})$ is TRUE

3. <u>Conclusion</u>:

- II. Let (P_n) be the formula $a + aq + aq^2 + ... + aq^n = a \frac{1 q^{n+1}}{1 q}$
 - 1. Intitialization : check that (P_0) is TRUE :
 - 2. <u>Heredity</u> : prove that for any given $k \ge 0$ the <u>implication</u> $(P_k) \Rightarrow (P_{k+1})$ is TRUE

3. <u>Conclusion</u> :

III.Let (P_n) be the formula $2^n = n^2$ 1. Initialization : check that (P_2) is TRUE :

- 2. <u>Heredity</u> : prove that for any given $k \ge 3$ the <u>implication</u> $(P_k) \Rightarrow (P_{k+1})$ is Wrong
- 3. <u>Conclusion</u> :
- IV. Let (P_n) be the formula n = n + 11. <u>Intitialization</u> : check that (P_0) is Wrong :
 - 2. <u>Heredity</u>: prove that for any given $k \ge 3$ the <u>implication</u> $(P_k) \Rightarrow (P_{k+1})$ is TRUE
 - 3. <u>Conclusion</u> :