General Theorems of Convergence of Monotonous Sequences

Theorem I: If (u_n) is monotonous and bounded then (u_n) has a finite limit.

Proof: Let (u_n) be an increasing sequence such that for any $n \ge n_0$, $u_n \le M$ [M is called a Majorant of (u_n)]

$$u_0 \le u_1 \le u_2 \le u_3 \le \dots u_n \le u_{n+1} \le \dots \le M$$

i. If (u_n) has at least one Majorant M, then any number M' \geq M is also a Majorant of (u_n) . Therefore the set E of majorants of (u_n) is a set of Real numbers which are all $\geq u_{n0}$. Hence that set E has one **smallest element** α (we admit this result):

$$u_0 \le u_1 \le u_2 \le u_3 \le \dots \ u_n \le u_{n+1} \le \dots \le \alpha \le \dots \le M \le \dots \le M$$
'

ii. Let's prove that this smallest element α is the limit of (u_n) :

Then for any $\varepsilon > 0$ (as small as we want), we must have one rank N > 0, such that [otherwise α would not be the smallest <u>Majorant</u> of (u_n)]

$$u_0 \le u_1 \le u_2 \le u_3 \le \dots (\alpha - \varepsilon) \le u_N \le u_{N+1} \le \dots \le \alpha \le \dots \le M$$

This is by definition showing that $\lim_{n \to \infty} (u_n) = \alpha$

- iii. NB: We have proved that the sequence (u_n) has a finite limit, but we don't know the value of that limit! We can only say that $\lim_{n \to \infty} (\mathbf{u_n}) = \alpha \leq \mathbf{M}$
- iv. A similar proof applies to sequences that are decreasing and have a Minorant m.

Theorem II: If (v_n) and (w_n) are two ADJACENT sequences, they both CONVERGE to a same limit.

Definition: two sequences (v_n) and (w_n) are said to be **ADJACENT** if and only if, they have the two following properties:

- i. (w_n) is increasing and (v_n) is decreasing
- ii. $\lim |v_n w_n| = 0$

$$w_0 \le w_1 \le w_2 \le w_3 \le \dots \ w_n \le w_{n+1} \le \dots \le v_{n+1} \le v_n \le \dots v_3 \le v_2 \le \dots \ v_1 \le v_0$$

Proof : from the previous theorem we can tell that both (v_n) and (w_n) have a limit, because they are both monotonous and bounded : (w_n) has at least one <u>majorant</u> : v_0 , and (v_n) has at least one <u>minorant</u> : w_0 .

Let $\alpha = \lim_{n \to \infty} (v_n)$ and $\beta \lim_{n \to \infty} (v_n)$, then because of condition (ii) we have $\alpha = \beta$. Since if $\alpha \neq \beta$ then the difference of $|v_n - w_n|$ could not be zeroed.

 $w_0 \le w_1 \le w_2 \le w_3 \le \dots w_n \le w_{n+1} \le \dots \le 0 \le \dots \le 0 \le v_{n+1} \le v_n \le \dots \le v_1 \le v_2 \le \dots \le v_1 \le v_0$ Finally we have $\lim_{n \to \infty} (v_n) = \alpha = \beta = \lim_{n \to \infty} (w_n)$.

NB: this is not providing the value of that common limit. we can only say that it's between v_0 and w_0 .