General Theorems of Convergence of Monotonous Sequences

Theorem I : If $\left(u_{\mathrm{n}}\right)$ is monotonous and bounded then $\left(u_{\mathrm{n}}\right)$ has a finite limit.
Proof: Let $\left(u_{\mathrm{n}}\right)$ be an increasing sequence such that for any $\mathrm{n} \geq \mathrm{n}_{0}, u_{\mathrm{n}} \leq \mathrm{M}$ [M is called a Majorant of $\left(u_{n}\right)$]

$$
u_{0} \leq u_{1} \leq u_{2} \leq u_{3} \leq \ldots u_{\mathrm{n}} \leq u_{\mathrm{n}+1} \leq \ldots \ldots \leq \mathrm{M}
$$

i. If $\left(u_{\mathrm{n}}\right)$ has at least one Majorant M , then any number $\mathrm{M}^{\prime} \geq \mathrm{M}$ is also a Majorant of $\left(u_{\mathrm{n}}\right)$. Therefore the set E of majorants of $\left(u_{\mathrm{n}}\right)$ is a set of Real numbers which are all $\geq u_{\mathrm{n} 0}$. Hence that set E has one smallest element $\boldsymbol{\alpha}$ (we admit this result) :

$$
u_{0} \leq u_{1} \leq u_{2} \leq u_{3} \leq \ldots u_{\mathrm{n}} \leq u_{\mathrm{n}+1} \leq \ldots \leq \alpha \leq \ldots \leq \mathrm{M} \leq \ldots \leq \mathrm{M}^{\prime}
$$

ii. Let's prove that this smallest element α is the limit of $\left(u_{n}\right)$:

Then for any $\varepsilon>0$ (as small as we want), we must have one rank $\mathrm{N}>0$, such that [otherwise α would not be the smallest Majorant of $\left(u_{n}\right)$]

$$
u_{0} \leq u_{1} \leq u_{2} \leq u_{3} \leq \ldots \ldots .(\alpha-\varepsilon) \leq u_{\mathrm{N}} \leq u_{\mathrm{N}+1} \leq \ldots \leq \alpha \leq \ldots \leq \mathrm{M}
$$

This is by definition showing that $\lim \left(\mathbf{u}_{\mathbf{n}}\right)=\boldsymbol{\alpha}$
iii. NB : We have proved that the sequence $\left(u_{\mathrm{n}}\right)$ has a finite limit, but we don't know the value of that limit! We can only say that $\lim \left(\mathbf{u}_{\mathbf{n}}\right)=\boldsymbol{\alpha} \leq \mathbf{M}$ iv. A similar proof applies to sequences that are decreasing and have a Minorant m .

Theorem II : If $\left(v_{\mathrm{n}}\right)$ and $\left(w_{\mathrm{n}}\right)$ are two ADJACENT sequences, they both CONVERGE to a same limit.
Definition : two sequences $\left(v_{\mathrm{n}}\right)$ and $\left(w_{\mathrm{n}}\right)$ are said to be ADJACENT if and only if, they have the two following properties:
i. $\left(w_{\mathrm{n}}\right)$ is increasing and $\left(v_{\mathrm{n}}\right)$ is decreasing
ii. $\lim \left|v_{\mathrm{n}}-w_{\mathrm{n}}\right|=0$

$$
w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq \ldots w_{\mathrm{n}} \leq w_{\mathrm{n}+1} \leq \ldots \ldots \leq v_{\mathrm{n}+1} \leq v_{\mathrm{n}} \leq \ldots v_{3} \leq v_{2} \leq \ldots v_{1} \leq v_{0}
$$

Proof : from the previous theorem we can tell that both $\left(v_{\mathrm{n}}\right)$ and $\left(w_{\mathrm{n}}\right)$ have a limit, because they are both monotonous and bounded : $\left(w_{\mathrm{n}}\right)$ has at least one majorant : v_{0}, and $\left(v_{n}\right)$ has at least one minorant : w_{0}.
Let $\alpha=\lim \left(v_{n}\right)$ and $\beta \lim \left(v_{n}\right)$. , then because of condition (ii) we have $\alpha=\beta$.
Since if $\alpha \neq \beta$ then the difference of $\left|v_{\mathrm{n}}-w_{\mathrm{n}}\right|$ could not be zeroed.
$w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq \ldots w_{\mathrm{n}} \leq w_{\mathrm{n}+1} \leq \ldots \alpha \leq \ldots \leq \beta \ldots \leq v_{\mathrm{n}+1} \leq v_{\mathrm{n}} \leq \ldots v_{3} \leq v_{2} \leq \ldots v_{1} \leq v_{0}$
Finally we have $\lim \left(v_{n}\right)=\alpha=\beta=\lim \left(w_{n}\right)$.
$N B$: this is not providing the value of that common limit. we can only say that it's between v_{0} and w_{0}.

