Geometric Series in Geometry (2) Von Koch's snow flake

I. Construction of the basic pattern :

1. Divide the sides of an equilateral triangle into three equal parts
2. Erase the middle part of each side and replace it by an equilateral triangle
3. Do the same on each of the 4 new sides of the side ...

$\mathrm{n}=1$

$\mathrm{n}=2$

$\mathrm{n}=3$
II. A paradoxal situation : we want to show that the length of the curve goes to infinity, while the area inside has a finite limit.
i. Let's call P_{n} the length of the perimeter of the $n^{\text {th }}$ picture
ii. Let's call C_{n} the number of sides
iii. Let's call A_{n} the area enclosed in the $\mathrm{n}^{\text {th }}$ picture.
4. Write $\mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~A}_{0}$ (the length of the side of the initial triangle is 1 unit)
$\mathrm{P}_{0}=3$;
$\mathrm{C}_{0}=3 ;$
$A_{0}=\sqrt{ } 3 / 4$
5. Write P_{1}, C_{1}, A_{1}, then P_{2}, C_{2}, A_{2} :
$P_{1}=\frac{4}{3} P_{0}=4 ; C_{1}=4 C_{0}=12 ; A_{1}=A_{0}+3\left(\frac{1}{3}\right)^{2} \frac{\sqrt{3}}{4} ; P_{2}=\frac{4}{3} P_{1}=\frac{16}{3} ; C_{2}=4 C_{1}=48 ; A_{2}=A_{1}+C_{1} \times\left[\left(\frac{1}{3}\right)^{2}\right]^{2} \times \frac{\sqrt{3}}{4}$
6. Write the relationship between $\mathrm{P}_{\mathrm{n}+1}$ and $\mathrm{P}_{\mathrm{n}} ; \mathrm{C}_{\mathrm{n}+1}$ and $\mathrm{C}_{\mathrm{n}} ; \mathrm{A}_{\mathrm{n}+1}$ and A_{n}
$P_{n+1}=\frac{4}{3} P_{n} ; C_{n+1}=4 C_{n} ; A_{n+1}=A_{n}+C_{n}\left[\left(\frac{1}{3}\right)^{n+1}\right]^{2} \frac{\sqrt{3}}{4} \Rightarrow P_{n}=3\left(\frac{4}{3}\right)^{n} ; C_{n}=3 \times 4^{n} ; A_{n+1}=A_{n}+3 \times 4^{n}\left(\frac{1}{3}\right)^{2(n+1)} \frac{\sqrt{3}}{4}=A_{n}+\frac{1}{3}\left(\frac{4}{9}\right)^{n} \frac{\sqrt{3}}{4}$
7. Find the limits of each sequence $\left(\mathrm{P}_{\mathrm{n}}\right),\left(\mathrm{C}_{\mathrm{n}}\right),\left(\mathrm{A}_{\mathrm{n}}\right)$:
$\lim P_{n}=+\infty$ and $\lim C_{n}=+\infty \quad$ (Geometric sequences, with reasons >1)
The Sequence $\left(\mathrm{A}_{\mathrm{n}}\right)$ is not geometric. It's the sum of A_{0} and a geometric series :

$$
\begin{aligned}
A_{n}= & A_{n-1}+\frac{1}{3}\left(\frac{4}{9}\right)^{n-1} \frac{\sqrt{3}}{4}=A_{0}+\frac{1}{3} \frac{\sqrt{3}}{4}+\frac{1}{3}\left(\frac{4}{9}\right)^{1} \frac{\sqrt{3}}{4}+\ldots+\frac{1}{3}\left(\frac{4}{9}\right)^{n-1} \frac{\sqrt{3}}{4} \\
A_{n}= & A_{0}+\frac{1}{3} \frac{\sqrt{3}}{4}\left[1+\left(\frac{4}{9}\right)+\left(\frac{4}{9}\right)^{2}+\ldots+\left(\frac{4}{9}\right)^{n-1}\right]=A_{0}+\frac{\sqrt{3}}{12} \sum_{k=0}^{k=n-1}\left(\frac{4}{9}\right)^{k}=A_{0}+\frac{\sqrt{3}}{12} \frac{1-\left(\frac{4}{9}\right)^{n}}{1-\left(\frac{4}{9}\right)} \\
& \lim A_{n}=A_{0}+\frac{\sqrt{3}}{12} \sum_{0}^{\infty}\left(\frac{4}{9}\right)^{n}=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{12} \frac{1}{1-\left(\frac{4}{9}\right)}=\frac{3 \sqrt{3}}{12}+\frac{\sqrt{3}}{12} \frac{9}{5}=\frac{\sqrt{3}}{4}\left[1+\frac{3}{5}\right]=\frac{2 \sqrt{3}}{5}
\end{aligned}
$$

