\square
\square
0. Pove the following formulas :

$$
\begin{array}{ccc}
(n+1)^{2}=1+2 \sum_{i=1}^{n} i+n & \text { and } & (n+1)^{3}=1+3 \sum_{i=1}^{n} i^{2}+3 \sum_{i=1}^{n} i+n \\
S_{n}=1+2+3+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} & \text { and } \quad \mathrm{T}_{\mathrm{n}}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{array}
$$

1. Construction of the basic patterns:

$\mathrm{Hg} 2: \mathrm{y}=\mathrm{xA2}, \mathrm{n}=10$

In these two graphics the Interval $[0,1]$ is divided into $n=10$ equal parts.
2. Evaluate the area of the rectangles defined by this division into 10 parts :

$$
A_{10}=\sum_{i=0}^{i=9} \frac{1}{10}\left(\frac{i}{10}\right)
$$

$$
B_{10}=\sum_{i=0}^{i=9} \frac{1}{10}\left(\frac{i}{10}\right)^{2}
$$

3. Evaluate the area of the rectangles defined by a division into n equal parts :

$$
A_{n}=\frac{1}{n^{2}} \sum_{i=0}^{i=n-1} i
$$

$$
B_{n}=\frac{1}{n^{3}} \sum_{i=0}^{i=n-1} i^{2}
$$

4. Find the limits A and B of $\left(\mathrm{A}_{\mathrm{n}}\right)$ and $\left(\mathrm{B}_{\mathrm{n}}\right)$. Area under the curve on $[0 ; 1]: S=\sum_{i=0}^{\infty} \frac{1}{n} f\left(\frac{i}{n}\right)$
