Problems of Convergence of Non Monotonous Recursive Sequences using **Recurrence Reasonning** :

I. Let
$$f(x) = 1 + \frac{1}{x}$$
 for $x > 0$, (u_n) defined by : $u_{n+1} = 1 + \frac{1}{u_n}$ with $u_0 = 1$.

1.
$$u_1 = 1 + \frac{1}{1} = 2$$
; $u_2 = 1 + \frac{1}{1 + \frac{1}{1}} = \frac{3}{2} = 1.5$; $u_3 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = \frac{5}{3} = 1.6$;

2. Construction of the first terms of the sequence (u_n) .

- 3. Show by <u>recurrence</u>, that for any $n \ge 0$, $[P_n]$ $1 \le u_n \le 2$
 - i. <u>Initialization</u> : $[P_0] \Leftrightarrow 1 \le u_0 \le 2$ TRUE
 - ii. <u>Heredity</u> : *f* is <u>decreasing</u> on $[0; +\infty[$ hence $1 \le u_n \le 2 \Rightarrow f(1) \ge f(u_n) \ge f(2)$ f(1) = 2, $f(u_n) = u_{n+1}$ and f(2)=1.5 then $[P_n] \Rightarrow [P_{n+1}]$ (*n* fixed).
 - iii. <u>Conclusion</u> : by recurrence, $[P_n]$ is true for any $n \ge 0$.
- 4. From the graph indicate whether (u_n) is monotonous : NO !
- 5. From the graph indicate whether (u_n) is converging. If yes, what is the limit ? It converges to the abscissa of the interception point between the graph of f and the 1^{st} bissector (y=x).

II. Let
$$g = f \circ f \Leftrightarrow g(x) = f[f(x)]$$

1. $g(x) = 1 + \frac{1}{1 + \frac{1}{x}} = \frac{2x+1}{x+1} = 2 - \frac{1}{x+1}$; $g = f \circ f$ is increasing because f is decreasing /
2. Let $v_n = u_{2n}$ and $w_n = u_{2n+1}$
i. $v_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = g(v_n)$; $v_0 = u_0 = 1$
 $w_{n+1} = u_{2n+3} = f(u_{2n-2}) = f(f(u_{2n-1})) = g(w_n)$; $w_0 = u_1 = 2$
ii. Show by recurrence, (v_n) is increasing : let $[P_n] = \frac{1}{|v_n = v_n|}$
1. Initialization : $[P_0] \Leftrightarrow v_0 \le v_1$ TRUE $(v_0 = u_0 = 1$ and $v_1 = u_2 = 1.5)$
1. Heredity : g is increasing on $f(0 : +\infty f$ hence $v_n \le v_{n+1} \Rightarrow g(v_n) \le g(v_{n+1})$
 $g(v_n) = v_{n+1}$ and $g(v_{n+1}) = v_{n-2}$ then $[P_n] \Rightarrow [P_{n-1}] (n fixed)$.
2. Conclusion : by recurrence, $[P_n]$ is true for any $n \ge 0$.
3. Prove that for any $n \ge 0 |v_{n+1} - w_{n+1}| \le \frac{1}{4}|v_n - w_n|$ (for any $n, u_n \ge 1$)
 $|v_{n+1} - w_{n+1}| \le |g(v_n) - g(w_n)| = \left| \left(2 - \frac{1}{v_n + 1}\right) - \left(2 - \frac{1}{w_n + 1}\right) \right| = \left| \frac{w_n - v_n}{(w_n + 1)(v_n + 1)} \right| \le \frac{1}{4} |w_n - v_n|$
4. Prove by recurrence that for any $n \ge 0$ $[P_n]$
i. Initialization : $[P_0] \Leftrightarrow |v_0 - w_0| \le \left(\frac{1}{4}\right)^0 \Leftrightarrow |1 - 2| \le 1$ TRUE 1
ii. Heredity :
 $\left\{ \begin{vmatrix} w_{n+1} - w_{n+1} \end{vmatrix} \le \frac{1}{4} |v_n - w_n| \\ |P_n - 1 - |v_n - w_n| \le \left(\frac{1}{4}\right)^n \right\} \Rightarrow |v_{n+1} - w_{n+1}| \le \frac{1}{4} \left(\frac{1}{4}\right)^n = \left(\frac{1}{4}\right)^{n+1}$ $[P_{n+1}]$
Conclusion : by recurrence, $[P_n]$ is true for any $n \ge 0$.
iii. $\lim |v_n - w_n| \le \left(\frac{1}{4}\right)^n = 0$
iv. The two sequences (v_n) and (w_n) are adjacent, then have the same limit α .
From the relationship $u_{n+1} = f(u_n)$ and f is a continuous function for $x > 0$
 $\lim_{n \to 1} f(u_n) = f(\lim(u_n)) \Leftrightarrow \alpha = f(\alpha) \Leftrightarrow \alpha$ solution of the equation $x = 1 + \frac{1}{x}$ $(x > 0) \Leftrightarrow \alpha = \frac{1 \pm \sqrt{\frac{5}{2}}}{2}$