Problems of Convergence of Non Monotonous Recursive Sequences using Recurrence Reasonning :
I. Let $f(x)=1+\frac{1}{x}$ for $\mathrm{x}>0,\left(u_{\mathrm{n}}\right)$ defined by : $u_{n+1}=1+\frac{1}{u_{n}}$ with $u_{0}=1$.

1. $u_{1}=1+\frac{1}{1}=2 ; u_{2}=1+\frac{1}{1+\frac{1}{1}}=\frac{3}{2}=1.5 ; u_{3}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}=\frac{5}{3}=1.6$;
2. Construction of the first terms of the sequence $\left(u_{\mathrm{n}}\right)$.

3. Show by recurrence, that for any $\mathrm{n} \geq 0,\left[\mathrm{P}_{\mathrm{n}}\right] \quad 1 \leq u_{\mathrm{n}} \leq 2$
i. Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow 1 \leq u_{0} \leq 2$ TRUE
ii. Heredity : fis decreasing on [0; $+\infty$ [hence $1 \leq u_{\mathrm{n}} \leq 2 \Rightarrow \mathrm{f}(1) \geq \mathrm{f}\left(u_{\mathrm{n}}\right) \geq \mathrm{f}(2)$

$$
\mathrm{f}(1)=2, \mathrm{f}\left(u_{\mathrm{n}}\right)=u_{\mathrm{n}+1} \text { and } \mathrm{f}(2)=1.5 \text { then }\left[\mathrm{P}_{\mathrm{n}}\right] \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right] \text { (n fixed). }
$$

iii. Conclusion : by recurrence, $\left[\mathrm{P}_{\mathrm{n}}\right]$ is true for any $\mathrm{n} \geq 0$.
4. From the graph indicate whether $\left(u_{\mathrm{n}}\right)$ is monotonous : $N O$!
5. From the graph indicate whether $\left(u_{\mathrm{n}}\right)$ is converging. If yes, what is the limit ? It converges to the abscissa of the interception point between the graph of f and the $1^{\text {st }}$ bissector $(y=x)$.
II. Let $g=f \circ f \Leftrightarrow g(x)=f[f(x)]$

1. $g(x)=1+\frac{1}{1+\frac{1}{x}}=\frac{2 x+1}{x+1}=2-\frac{1}{x+1} ; g=f \circ f$ is increasing because f is decreasing /
2. Let $v_{\mathrm{n}}=u_{2 \mathrm{n}}$ and $w_{\mathrm{n}}=u_{2 \mathrm{n}+1}$
i. $v_{\mathrm{n}+1}=u_{2 \mathrm{n}+2}=f\left(u_{2 \mathrm{n}+1}\right)=f\left(f\left(u_{2 \mathrm{n}}\right)\right)=\mathrm{g}\left(v_{\mathrm{n}}\right) ; v_{0}=u_{0}=1$

$$
w_{\mathrm{n}+1}=u_{2 \mathrm{n}+3}=f\left(u_{2 \mathrm{n}+2}\right)=f\left(f\left(u_{2 \mathrm{n}+1}\right)\right)=\mathrm{g}\left(w_{\mathrm{n}}\right) ; w_{0}=u_{1}=2
$$

ii. Show by recurrence, $\left(v_{\mathrm{n}}\right)$ is increasing : let $\left[\mathrm{P}_{\mathrm{n}}\right] \quad v_{\mathrm{n}} \leq v_{\mathrm{n}+1}$

- \quad Initialization : $\left[\mathrm{P}_{0}\right] \Leftrightarrow v_{0} \leq v_{1} \operatorname{TRUE}\left(v_{0}=u_{0}=1\right.$ and $\left.v_{1}=u_{2}=1.5\right)$
- Heredity : g is increasing on $\left[0 ;+\infty\right.$ [hence $v_{\mathrm{n}} \leq v_{\mathrm{n}+1} \Rightarrow g\left(v_{\mathrm{n}}\right) \leq g\left(v_{\mathrm{n}+1}\right)$ $\mathrm{g}\left(v_{\mathrm{n}}\right)=v_{\mathrm{n}+1}$ and $\mathrm{g}\left(v_{\mathrm{n}+1}\right)=v_{\mathrm{n}+2}$ then $\left[\mathrm{P}_{\mathrm{n}}\right] \Rightarrow\left[\mathrm{P}_{\mathrm{n}+1}\right]$ (n fixed).
- Conclusion : by recurrence, $\left[P_{n}\right]$ is true for any $n \geq 0$.

3. Prove that for any $\mathrm{n} \geq 0\left|v_{n+1}-w_{n+1}\right| \leq \frac{1}{4}\left|v_{n}-w_{n}\right|$ (for any $n, u_{n} \geq 1$)

$$
\left|v_{n+1}-w_{n+1}\right| \leq\left|g\left(v_{n}\right)-g\left(w_{n}\right)\right|=\left|\left(2-\frac{1}{v_{n}+1}\right)-\left(2-\frac{1}{w_{n}+1}\right)\right|=\left|\frac{w_{n}-v_{n}}{\left(w_{n}+1\right)\left(v_{n}+1\right)}\right| \leq \frac{1}{4}\left|w_{n}-v_{n}\right|
$$

4. Prove by recurrence that for any $\mathrm{n} \geq 0 \quad\left[\mathrm{P}_{\mathrm{n}}\right] \quad\left|v_{n}-w_{n}\right| \leq\left(\frac{1}{4}\right)^{n}$,
i. $\underline{\text { Initialization }: ~}\left[\mathrm{P}_{0}\right] \Leftrightarrow\left|v_{0}-w_{0}\right| \leq\left(\frac{1}{4}\right)^{0} \Leftrightarrow|1-2| \leq 1 \quad$ TRUE !
ii. Heredity :

$$
\left\{\begin{array}{l}
\left|v_{n+1}-w_{n+1}\right| \leq \frac{1}{4}\left|v_{n}-w_{n}\right| \\
{\left[\mathrm{P}_{\mathrm{n}}\right]\left|v_{n}-w_{n}\right| \leq\left(\frac{1}{4}\right)^{n}}
\end{array}\right\} \Rightarrow\left|v_{n+1}-w_{n+1}\right| \leq \frac{1}{4}\left(\frac{1}{4}\right)^{n}=\left(\frac{1}{4}\right)^{n+1} \quad\left[\mathrm{P}_{\mathrm{n}+1}\right]
$$

Conclusion : by recurrence, $\left[\mathrm{P}_{\mathrm{n}}\right]$ is true for any $\mathrm{n} \geq 0$.
iii. $\lim \left|v_{n}-w_{n}\right|=0$ because $\lim \left(\frac{1}{4}\right)^{n}=0$
iv. The two sequences $\left(v_{\mathrm{n}}\right)$ and $\left(w_{\mathrm{n}}\right)$ are adjacent, then have the same limit α.

From the relationship $u_{\mathrm{n}+1}=f\left(u_{\mathrm{n}}\right)$ and f is a contiuous function for $\mathrm{x}>0$ $\lim u_{n+1}=\lim f\left(u_{n}\right)=f\left(\lim \left(u_{n}\right)\right) \Leftrightarrow \alpha=f(\alpha) \Leftrightarrow \alpha$ solution of the equation $x=1+\frac{1}{x}(x>0) \Leftrightarrow \alpha=\frac{1+\sqrt{5}}{2}$

