\square
\square

Problems of Convergence of Non Monotonous Recursive Sequences using Recurrence Reasonning :

Study of the sequence defined by (n consecutive fractions)

$$
u_{n}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{.}{1+\frac{1}{1}}}}}}
$$

I. Let $f(x)=1+\frac{1}{x}$ for $\mathrm{x}>0,\left(u_{\mathrm{n}}\right)$ defined by : $u_{n+1}=1+\frac{1}{u_{n}}$ with $u_{0}=1$.

1. Write $u_{1} ; u_{2} ; u_{3}$.
2. On the back of the page graph the function f on $[0 ; 2]$ and show the construction of the first terms of the sequence $\left(u_{\mathrm{n}}\right)$.
3. Show by recurrence, that for any $\mathrm{n} \geq 0,1 \leq u_{\mathrm{n}} \leq 2$
4. From the graph indicate whether $\left(u_{\mathrm{n}}\right)$ is monotonous.
5. From the graph indicate whether $\left(u_{\mathrm{n}}\right)$ is converging. If yes, what is the limit ?
II. Let $g=f \circ f \Leftrightarrow g(x)=f[f(x)]$
6. Calculate $g(x)$, and show that g is increasing on $[0 ;+\infty[$
7. Let $v_{\mathrm{n}}=u_{2 \mathrm{n}}$ and $w_{\mathrm{n}}=u_{2 \mathrm{n}+1}$
i. Show that $v_{\mathrm{n}+1}=\mathrm{g}\left(v_{\mathrm{n}}\right)$ and that $w_{\mathrm{n}+1}=\mathrm{g}\left(w_{\mathrm{n}}\right)$; give v_{0} and w_{0}
ii. Show by recurrence, that $\left(w_{\mathrm{n}}\right)$ is decreasing and that $\left(v_{\mathrm{n}}\right)$ is increasing.
iii. Prove that for any $\mathrm{n} \geq 0\left|v_{n+1}-w_{n+1}\right| \leq \frac{1}{4}\left|v_{n}-w_{n}\right|$
iv. Prove by recurrence that for any $\mathrm{n} \geq 0\left|v_{n}-w_{n}\right| \leq\left(\frac{1}{4}\right)^{n}$,
v. Prove that $\lim \left|v_{n}-w_{n}\right|=0$
vi. The two sequences $\left(v_{\mathrm{n}}\right)$ and $\left(w_{\mathrm{n}}\right)$ are adjacent, then have the same limit α.

Prove that this limit is the positive solution of the equation $x=1+\frac{1}{x}$, and give the exact value of α.

