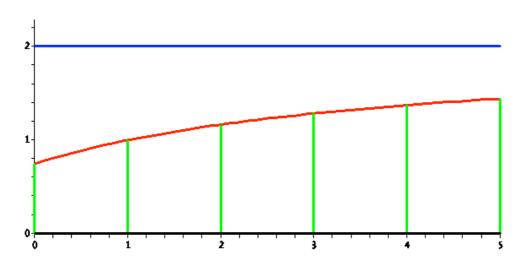
Numerical Sequences 2.1

Problem I : Let f be the function defined by $f(x) = \frac{2x+3}{x+4}$ for $x \ge 0$.

Study the Sequence defined by the formula $u_n = f(n) = \frac{2n+3}{n+4}$ for every $n \in N$.

- a. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (u_n) . Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (if yes, what are the boundaries ?)
 - iii. Does-it seem to have a limit (*if yes which one is it?*)?
 - b. Prove that (u_n) is increasing
 - c. Prove that (u_n) is bounded by 0 and 2.
 - d. Find for which value of n we have : 2 $\varepsilon < u_n < 2$ with $\varepsilon = 10^{-2}$
 - e. Prove that for any $n \ge 1$ we have $|u_n 2| \le \frac{5}{n}$. Conclusion ?



- a) From the graph we can tell : (i) (u_n) is increasing; (ii) $0.75 \le u_n \le 2$; (iii) $Lim(u_n) = 2$
- b) From the properties of the function f, $f(x) = \frac{2x+3}{x+4} = 2 \frac{5}{x+4}$ we can tell
- that (u_n) is increasing because f is increasing on $[0; +\infty[$ and $u_n=f(n)$. c) Because f is increasing on $[0; +\infty[$, f(0) = .75 and $\lim f(x) = 2$
- then for any Integer n, $0.75 \le u_n \le 2$.

d)

$$2-\varepsilon \le u_n \le 2+\varepsilon \Leftrightarrow 2-\varepsilon \le 2-\frac{5}{n+4} \le 2+\varepsilon \Leftrightarrow -\varepsilon \le -\frac{5}{n+4} \le \varepsilon \Leftrightarrow -\varepsilon \le \frac{5}{n+4} \le \varepsilon$$

$$\Leftrightarrow (\varepsilon > 0) \frac{n+4}{5} \ge \frac{1}{\varepsilon} \Leftrightarrow n \ge \frac{5}{\varepsilon} - 4 \Leftrightarrow (for \ \varepsilon \ = \ \frac{1}{100}) \ n \ \ge \ 496$$
e)

$$|u_n - 2| = \left|\frac{-5}{n+4}\right| = \frac{5}{n+4} \le \frac{5}{n} \text{ and } \lim_{n \to +\infty} \left(\frac{5}{n}\right) = 0 \text{ then } \lim_{n \to +\infty} |u_n - 2| = 0$$
which means that $\lim_{n \to +\infty} u_n = 2$

Numerical Sequences 2.2

Problem II : Let f be the function defined by $f(x) = \frac{2x+3}{x+4}$ for $x \ge 0$.

Study of the sequence (v_n) defined by $v_{n+1} = f(v_n) = \frac{2v_n + 3}{v_n + 4}$; $n \ge 1$ and $v_0 = 4$.

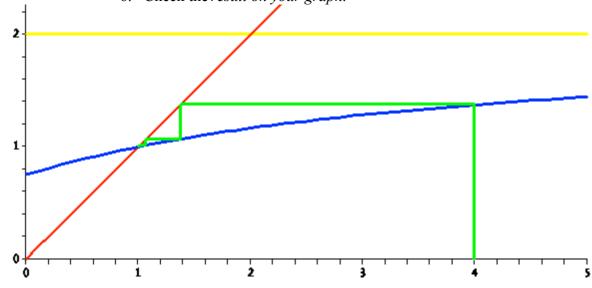
- 1. Graph the function f on $[0; +\infty)$ and draw the first terms of the sequence (v_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y=x)Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (*if yes, what are the boundaries* ?)
 - iii. Does-it seam to have a limit (*if yes which one is it?*)?

$$V_n - 1$$

2. Let
$$W_n = \frac{v_n - 1}{v_n + 3}$$
 for any $n > 0$.

Show that the new sequence (w_n) is a geometric sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of w_n directly in function of n.
- 3. Deduct the limit of w_n .
- 4. Find the expression of v_n in function of w_n
- 5. Find the limit of v_n
- 6. Check the result on your graph.



- From the graph of the sequence we can tell that the sequence (v_n) is decreasing, bounded by 1 1) and 4 and seems to be converging towards 1 (abscissa of the interception of f with the 1^{st} bisector.
- (w_n) is a geometric sequence because the ratio of two consecutive terms is constant : 2)

$$w_{n+1} = \frac{v_{n+1} - 1}{v_{n+1} + 3} = \frac{\frac{2v_n + 3}{v_n + 4} - 1}{\frac{2v_n + 3}{v_n + 4} + 3} = \frac{v_n - 1}{5v_n + 15} = \frac{1}{5} \cdot \frac{v_n - 1}{v_n + 3} = \frac{1}{5} w_n \quad ; w_0 = \frac{v_0 - 1}{v_0 + 3} = \frac{4 - 1}{4 + 3} = \frac{3}{7} \quad and \ the \ reason \ q = \frac{1}{5}$$
$$\therefore w_n = \frac{3}{7} \left(\frac{1}{5}\right)^n \Rightarrow \lim_{n \to +\infty} w_n = 0 \ (\because |q| < 1)$$
$$w_n = \frac{v_n - 1}{v_n + 3} \Leftrightarrow v_n = \frac{1 + 3w_n}{1 - w_n} \ then \ \lim_{n \to +\infty} v_n = \frac{1 + 3 \times 0}{1 - 0} = 1$$
The interception point of the graph of f and of the 1st bisector (y=x) yields the equation
$$\frac{2x + 3}{x + 4} = x \ and \ x > 0 \Leftrightarrow x^2 + 2x - 3 = 0 \ and \ x > 0 \Leftrightarrow x = 1$$