\square
\square

Numerical Sequences (2.4)

Problem - Some scientists have described the evolution of a kind of small desert mice by the following sequence : U_{n} represents the number of thousands of mice at the year $2000+\mathrm{n}$. To survive the mice have to hide against the desert snake wich eat them up but they don't allways escape ...
$U_{0}=1$ and $U_{n+1}=f\left(U_{n}\right)$ with $f(x)=0.4 x(8-x)$ for $0 \leq x \leq 8 \quad \therefore U_{n+1}=0.4 U_{n}\left(8-U_{n}\right)$

1. Draw carefully the graph of the function f.
2. Calculate U_{1}, U_{2}, U_{3}.
3. Show the construction of the first tems $U_{1}, U_{2}, U_{3} U_{4}, U_{5}, U_{6} \ldots$ on the graph
4. Is the sequence $\left(U_{n}\right)$ monotonous ? (If yes say how).
5. Is the sequence (U_{n}) bounded if yes give the boundaries)
6. Is the sequence $\left(U_{n}\right)$ converging towards a finite limit (if yes, give that limit).
7.

