Numerical Sequences (2.3)

Problem: Let f be the function defined by $f(x) = \frac{-7x - 8}{2x + 1}$.

Study of the sequence (v_n) defined by $u_{n+1} = f(u_n) = \frac{-7u_n - 8}{2u_n + 1}$; $n \ge 1$ and $u_0 = -0.8$

- 1. Graph the function f on [-6; +6] and build the first terms of the sequence (u_n) .
- 2. Find the coordinates of the intersection of (Cf) with the first bisector (y=x)
- 3. Indicate from the graph whether or not the sequence is:
 - i. Monotonous (if yes how):
 - ii. Bounded (if yes, what are the boundaries?)
 - iii. Does it seem to have a limit (if yes which one is it?)?
- 4. Let $v_n = \frac{2u_n + 1}{u_n + 2}$ for any $n \ge 0$. Show that the new sequence (v_n) is an **arithmetic sequence**
 - (i) Find its first term v_0 and its reason r
 - (ii) Find the expression of v_n directly in function of n.
 - (iii) Deduct the limit of v_{n.}
 - (iv) Find the expression of u_n in function of v_n
 - (v) Deduct the limit of u_n
 - (vi) Check the result on your graph

1-2 Intersection of (C_f) with the 1^{st} Bisector (y=x):

$$\frac{-7x - 8}{2x + 1} = x \iff 2x^2 + 8x + 8 = 0 \iff x^2 + 4x + 4 = 0 \iff (x + 2)^2 = 0 \iff x = -2$$

3- The sequence (u_n) is monotonous (increasing) for $n \ge 2$.

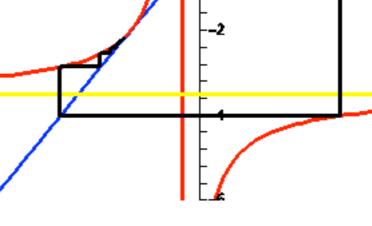
and for any $n \ge 0$, $-4 \le u_n \le 4$.

It seems to be converging towards -2.

4-
$$v_n = \frac{2u_n + 1}{u_n + 2}$$
; then we get:

$$v_{n+1} = \frac{2u_{n+1} + 1}{u_{n+1} + 2} = \frac{2\frac{-7u_n - 8}{2u_n + 1} + 1}{\frac{-7u_n - 8}{2u_n + 1} + 2}$$

$$\therefore v_{n+1} = \frac{-12u_n - 15}{-3u_n - 6} = \frac{4u_n + 5}{u_n + 2} = 2 + \frac{2u_n + 1}{u_n + 2}$$


 \therefore $v_{n+1} = 2 + v_n$ Arithmetic sequence

Reason of (v_n) : r = 2;

$$1^{st}$$
 term: $v_0 = \frac{2u_0 + 1}{u_0 + 2} = -\frac{0.6}{3.6} = -\frac{1}{6}$

$$\therefore \text{ for any } n \ge 0, \ v_n = -\frac{1}{6} + 2n \therefore \lim v_n = +\infty$$

$$v_n = \frac{2u_n + 1}{u_n + 2} \Leftrightarrow u_n = \frac{-2v_n + 1}{v_n - 2} = -2 - \frac{5}{v_n - 2} \quad \therefore \quad \lim u_n = -2 \quad [\text{Interception of } (Cf) \text{ with } (\Delta) \].$$

