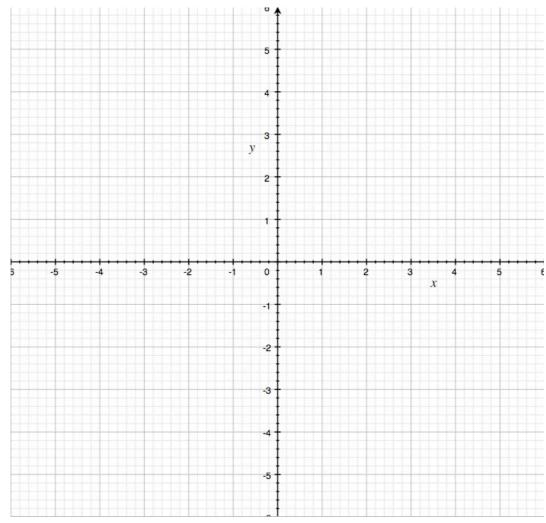
Numerical Sequences (2.3)

Problem: Let f be the function defined by $f(x) = \frac{-7x - 8}{2x + 1}$.


Study of the sequence
$$(v_n)$$
 defined by $u_{n+1} = f(u_n) = \frac{-7u_n - 8}{2u_n + 1}$; $n \ge 1$ and $u_0 = -0.8$

- 1. Graph the function f on [-6; +6] and build the first terms of the sequence (u_n) .
- 2. Find the coordinates of the intersection of (Cf) with the first bisector (y=x)
- 3. Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how):
 - ii. Bounded (if yes, what are the boundaries?)
 - iii. Does it seam to have a limit (if yes which one is it?)?

4. Let
$$v_n = \frac{2u_n + 1}{u_n + 2}$$
 for any $n \ge 0$.

Show that the new sequence (v_n) is an **arithmetic sequence** : [use back of page]

- (i) Find its first term v_0 and its reason r
- (ii) Find the expression of v_n directly in function of n.
- (iii) Deduct the limit of v_n.
- (iv) Find the expression of u_n in function of v_n
- (v) Deduct the limit of u_n
- (vi) Check the result on your graph.

