\qquad
\square

Numerical Sequences (2.3)

Problem : Let f be the function defined by $f(x)=\frac{-7 x-8}{2 x+1}$.
Study of the sequence $\left(v_{n}\right)$ defined by $u_{n+1}=f\left(u_{n}\right)=\frac{-7 u_{n}-8}{2 u_{n}+1} ; \mathrm{n} \geq 1$ and $u_{0}=-0.8$

1. Graph the function f on $[-6 ;+6]$ and build the first terms of the sequence $\left(u_{\mathrm{n}}\right)$.
2. Find the coordinates of the intersection of (Cf) with the first bisector $(\mathrm{y}=\mathrm{x})$
3. Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does it seam to have a limit (if yes which one is it?)?
4. Let $v_{n}=\frac{2 u_{n}+1}{u_{n}+2}$ for any $n \geq 0$.

Show that the new sequence $\left(\mathrm{v}_{\mathrm{n}}\right)$ is an arithmetic sequence : [use back of page]
(i) Find its first term v_{0} and its reason r
(ii) Find the expression of v_{n} directly in function of n.
(iii) Deduct the limit of v_{n}.
(iv) Find the expression of u_{n} in function of v_{n}
(v) Deduct the limit of u_{n}
(vi) Check the result on your graph.

