\qquad

Numerical Sequences (2.1)

Problem I : Let f be the function defined by $f(x)=\frac{2 x+3}{x+4}$ for $\mathrm{x} \geq 0$.
Study the Sequence defined by the formula $u_{n}=f(n)=\frac{2 n+3}{n+4}$ for every $\mathrm{n} \in \mathrm{N}$.
a. Graph the function f on $\left[0 ;+\infty\left[\right.\right.$ and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$.

Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (ifyes, what are the boundaries?)
iii. Does-it seem to have a limit (if yes which one is it?)?
b. Prove that $\left(u_{n}\right)$ is increasing
c. Prove that $\left(u_{n}\right)$ is bounded by 0 and 2 .
d. Find for which value of n we have : $2-\varepsilon<u_{n}<2$ with $\varepsilon=10^{-2}$
e. Prove that for any $\mathrm{n} \geq 1$ we have $\left|u_{n}-2\right| \leq \frac{5}{n}$. Conclusion ?

