jiguanglaoshi@gmail.com

10

All that you ever wanted to know about Sequences without ever daring ask about them....

Definition: any list of Numbers written in a certain order is making a Numerical Sequence. We use a special notation to specify each term of the sequence in reference to it's rank in the list, this notation is generally U(n) or simply U_n . The index n shows the position of the number in the list. This index is a Natural number: 0, 1, 2, 3, ..., n-1, n, n+1,... The terms U_{n-1} , U_n and U_{n+1} are three following numbers in the sequence. U_0 represents the initial term of the sequence (rank 0 = 1st term).

Examples: (1) Sequence of the numbers obtained by counting 3 by 3 from -5:

n

(-5, -2, 1, 4, 7, ...,) the general term of this sequence is
$$U_n = -5 + 3.n$$

The first term is $U_0 = -5$; the 11^{th} term is $U_{10} = -5 + 3 \times 10 = 25$; 100^{th} term $U_{99} = -5 + 3 \times 99 = 292$.

(2) Sequence of the numbers obtained by multiplying every previous number by 2 starting with 3:

$$(3, 6, 12, 24, 48, ...)$$
 The general term of that sequence is $Vn = 3.(2)^n$

First term:
$$V_0 = 3$$
; 10^{th} term: $V_9 = 3.(2)^9 = 3 \times 512 = 1536$; $V_{20} = 3.(2)^{20} = 3 \times 1024^2 = 3.145.728$.

- (3) Sequence of the decimals digits of the number π : (3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9) In this sequence the 10th term (rank n = 9) is 5, but there is no simple formula to find it ...
- (4) Fibonacci sequence: (1, 1, 2, 3, 5, 8, 13, 21, 34, ...) in this sequence every term is the sum of the two previous ones. We can get as many terms as we want but we cannot get the value of the 100^{th} term without calculating the 99 terms before it, We have: $U_{n+1} = U_n + U_{n-1}$, But the formula that would provide the direct value is complicated (see Binet formula on the website)
 - (5) Sequence of the squares of the integers: (0, 1, 4, 9, 16, 25, 36, ...) It's easy to find that $U_n = n^2$ and that $U_{100} = 100^2 = 10000$.

The type (1) sequences are named **Arithmetic Sequences**, The type (2) sequences are named **Geometric Sequences**, are sequences (3), (4), (5) are neither arithmetic or geometric

The sequences (3), (4), (5) are neither arithmetic or geometric.	
ARITHMETIC Sequence	GEOMETRIC Sequence
Definitions 1	
Every term is obtained by adding the same number r to the previous one (r = « reason »)	Every term is obtained by multiplying each term by the same number q (q = « quotient»)
$\mathbf{U_{n+1}} = \mathbf{U_n} + \mathbf{r}$	$\mathbf{V}_{\mathbf{n}+1} = \mathbf{q}.\mathbf{V}_{\mathbf{n}}$
Definitions 2	
The difference of two following terms is constant	The quotient of two following terms is constant
$\mathbf{U_{n+1}}$ - $\mathbf{U_{n}} = \mathbf{r}$	$\frac{V_{n+1}}{V_n} = q$
General Formulas	
$\mathbf{U_n} = \mathbf{a} + \mathbf{n.r}$	$V_n = a.q^n$
1^{st} term : $\mathbf{U_0} = \mathbf{a}$; reason = \mathbf{r} (ratio = difference)	1^{st} term : $\mathbf{V_0} = \mathbf{a}$; reason = \mathbf{q} (quotient = $ratio$)
Characteristic property # 1	
Every term is the arithmetic mean of the terms which are équidistants from it. $U_n = \frac{U_{n-p} + U_{n+p}}{2}$	Every term is the quadratic mean of the terms which are équidistants from it. $\mathbf{U_n} = \sqrt{\mathbf{U_{n-p}.U_{n+p}}}$
Characteristic property # 2	
Variation of Linear type	Variation of Exponential type
Arithmetic Sequence Arithmetic Sequence Arithmetic Sequence Arithmetic Sequence	Geometric Sequence 3500 2500 2000
5 25 20 15 10 5 0	5 1500 1000 500