Numerical Sequences

Problem I : Let f be the function defined by $f(x)=\frac{2 x+3}{x+4}$ for $\mathrm{x} \geq 0$. Study the Sequence defined by the formula $u_{n}=f(n)=\frac{2 n+3}{n+4}$ for every $\mathrm{n} \in \mathrm{N}$.
a. Graph the function f on $\left[0 ;+\infty\left[\right.\right.$ and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$. Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries ?)
iii. Does-it seem to have a limit (if yes which one is it?)?
b. Prove that $\left(u_{n}\right)$ is increasing
c. Prove that $\left(u_{n}\right)$ is bounded by 0 and 2 .
d. Find for which value of n we have : $2-\varepsilon<u_{n}<2$ with $\varepsilon=10^{-2}$
e. Prove that for any $\mathrm{n} \geq 1$ we have $\left|u_{n}-2\right| \leq \frac{5}{n}$. Conclusion?

a) From the graph we can tell :
(i) $\left(u_{n}\right)$ is increasing; (ii) $0.75 \leq u_{n} \leq 2$; (iii) $\operatorname{Lim}\left(u_{n}\right)=2$
b) From the properties of the function $f, f(x)=\frac{2 x+3}{x+4}=2-\frac{5}{x+4}$ we can tell that $\left(u_{n}\right)$ is increasing because f is increasing on [$0 ;+\infty\left[\right.$ and $u_{n}=f(n)$.
c) Because f is increasing on $[0 ;+\infty[, f(0)=.75$ and $\lim f(x)=2$
then for any Integer $n, 0.75 \leq u_{n} \leq 2$.
d)
$2-\varepsilon \leq u_{n} \leq 2+\varepsilon \Leftrightarrow 2-\varepsilon \leq 2-\frac{5}{n+4} \leq 2+\varepsilon \Leftrightarrow-\varepsilon \leq-\frac{5}{n+4} \leq \varepsilon \Leftrightarrow-\varepsilon \leq \frac{5}{n+4} \leq \varepsilon$ $\Leftrightarrow(\varepsilon>0) \frac{n+4}{5} \geq \frac{1}{\varepsilon} \Leftrightarrow n \geq \frac{5}{\varepsilon}-4 \Leftrightarrow\left(\right.$ for $\left.\varepsilon=\frac{1}{100}\right) n \geq 496$
e)

$$
\left|u_{n}-2\right|=\left|\frac{-5}{n+4}\right|=\frac{5}{n+4} \leq \frac{5}{n} \text { and } \lim _{n \rightarrow+\infty}\left(\frac{5}{n}\right)=0 \text { then } \lim _{n \rightarrow+\infty}\left|u_{n}-2\right|=0
$$

which means that $\lim _{n \rightarrow+\infty} u_{n}=2$

Problem II : Let f be the function defined by $f(x)=\frac{2 x+3}{x+4}$ for $\mathrm{x} \geq 0$.
Study of the sequence $\left(v_{n}\right)$ defined by $v_{n+1}=f\left(v_{n}\right)=\frac{2 v_{n}+3}{v_{n}+4} ; \mathrm{n} \geq 1$ and $v_{0}=4$.

1. Graph the function f on $\left[0 ;+\infty\right.$ [and draw the first terms of the sequence $\left(v_{\mathrm{n}}\right)$.

Find the coordinates of the intersection of (Cf) with the first bisector $(\mathrm{y}=\mathrm{x})$
Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does-it seam to have a limit (if yes which one is it?)?
2. Let $w_{n}=\frac{v_{n}-1}{v_{n}+3}$ for any $n>0$.

Show that the new sequence $\left(\mathrm{w}_{\mathrm{n}}\right)$ is a geometric sequence :

1. Find its first term and its reason.
2. Find the expression of w_{n} directly in function of n .
3. Deduct the limit of w_{n}.
4. Find the expression of v_{n} in function of w_{n}
5. Find the limit of v_{n}
6. Check the result on your graph.

1) From the graph of the sequence we can tell that the sequence (v_{n}) is decreasing, bounded by 1 and 4 and seems to be converging towards 1 (abscissa of the interception off with the $1^{\text {st }}$ bisector.
2) (w_{n}) is a geometric sequence because the ratio of two consecutive terms is constant :

$$
\begin{array}{|l|}
\hline w_{n+1}=\frac{v_{n+1}-1}{v_{n+1}+3}=\frac{\frac{2 v_{n}+3}{v_{n}+4}-1}{\frac{2 v_{n}+3}{v_{n}+4}+3}=\frac{v_{n}-1}{5 v_{n}+15}=\frac{1}{5} \cdot \frac{v_{n}-1}{v_{n}+3}=\frac{1}{5} w_{n} ; w_{0}=\frac{v_{0}-1}{v_{0}+3}=\frac{4-1}{4+3}=\frac{3}{7} \text { and the reason } q=\frac{1}{5} \\
\therefore w_{n}=\frac{3}{7}\left(\frac{1}{5}\right)^{n} \Rightarrow \lim _{n \rightarrow+\infty} w_{n}=0(\because|q|<1) \\
w_{n}=\frac{v_{n}-1}{v_{n}+3} \Leftrightarrow v_{n}=\frac{1+3 w_{n}}{1-w_{n}} \text { then } \lim _{n \rightarrow+\infty} v_{n}=\frac{1+3 \times 0}{1-0}=1 \\
\text { The interception point of the graph of } \mathrm{f} \text { and of the } 1 \text { st bisector }(\mathrm{y}=\mathrm{x}) \text { yields the equation } \\
\frac{2 x+3}{x+4}=x \text { and } x>0 \Leftrightarrow x^{2}+2 x-3=0 \text { and } x>0 \Leftrightarrow x=1
\end{array}
$$

