I.1. Carefully draw the Parabolas of the following equations $y = ax^2$. Please use different colors. Take care of the symmetry and place A(1;a) and $B(\frac{1}{a};\frac{1}{a})$.

$$\bullet (P_1) \quad y = \frac{1}{4} x^2$$

$$\bullet (P_3) \ \mathbf{y} = \frac{1}{2} \mathbf{x}^2$$

•
$$(P_5)$$
 y = - $2x^2$

$$\bullet (P_6) \quad y = -4x^2$$

II – Let (P) be the parabola defined by: $y = \frac{1}{2}(x-3)^2 - 2$

a) Vertex coordinates:

$$\chi =$$

- b) Equation of the axis of symmetry : x =
- c) Intersection with (Oy):

$$x = 0$$

d) Intersections with (Ox): (show calculations below)

$$y = 0$$

e) Draw carefully the Parabola using all the above informations (choose carefully the position of the center of coordinates so that the parabola can be seen clearly)

II – Let (P) be the parabola defined by: $y = -\frac{1}{4}(x+2)^2 + 4$

f) Vertex coordinates:

$$x =$$

- g) Equation of the axis of symmetry : x =
- *h)* Intersection with (Oy):

$$x = 0$$

i) Intersections with (Ox): (show calculations below)

$$y = 0$$

j) Draw carefully the Parabola using all the above informations (choose carefully the position of the center of coordinates so that the parabola can be seen clearly)

III – Let (P) be the parabola defined by : $y = \frac{1}{2}x^2 - 2x - 2$

k) Vertex coordinates:

$$x =$$

- l) Equation of the axis of symmetry : x =
- *m)* Intersection with (Oy):

$$x = 0$$

$$y =$$

n) Intersections with (Ox): (show calculations below)

$$y = 0$$

$$\chi =$$

o) Draw carefully the Parabola using all the above informations (choose carefully the position of the center of coordinates so that the parabola can be seen clearly)

V . 1. Draw the parabola and the 2 lines defined by the following equations :

(1)
$$y = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$$
; (2) $y = -\frac{1}{2}x + 2$; (3) $y = \frac{1}{2}x + 2$

V.2. Find the coordinates of the intersection points of the 2 lines with the Parabola.

V.3. Let m be any real number. We consider the Staight line ($\mathbf{D}_{\mathbf{m}}$) defined by the equation y = mx + 2 a) Show that ($\mathbf{D}_{\mathbf{m}}$) turns around a fixed point A while m varies from $-\infty$ to $+\infty$.

b) Find for which values of m the line (D_m) cuts the Parabola in 2 points (write the proof).

c) Explain why the line $(\mathbf{D}_{1/2})$ is tangent to the Parabola in A(0;2).