北京景山学校－ 2010
http：／／beijingshanmaths．org

# 1）Review of elementary functions（Part 1）： 

Examples－Equations－Graphs－Exercises
Use of Mathematical software．
a）Linear functions vs Affine functions

$$
f: x \mapsto y=m x \quad \text { vs } \quad g: x \mapsto y=m x+p
$$

b）General equation of straight lines ：$a x+b y+c=0$
c）Graphing inequalities ：$a x+b y \leq c$
d）Graphing linear systems of inequalities $\left\{\begin{array}{l}a x+b y \leq c \\ a^{\prime} x+b^{\prime} y \leq c^{\prime}\end{array}\right.$
e）Word problems（Kinematics \＆Economics）

I ． 1 Draw the lines defined by the given equations below（show which is which）：
（1）$x-2 y+10=0$
（2）$x+2 y-10=0$
（3） $2 y-x+10=0$
（4） $2 y+x+10=0$

I ． 2 Shade the area defined by the system of inequalities below ：
$\begin{cases}\text {（1）} & x-2 y \geq-10 \\ \text {（2）} & x+2 y \leq 10 \\ \text {（3）} & x-2 y \leq 10 \\ \text {（4）} & x+2 y \geq-10\end{cases}$


I． 3 From the graph，determine the measure of the shaded area（in square units）．

北京景山学校－ 2010
Mathematics－Elective Pre－Calc．－Senior 1＋
http：／／beijingshanmaths．org
Assignment \＃1－ 09.20
09．27－p．2／3

## II．1．Movements of two cars moving in opposite directions from A to B．

The distance between A and B is 450 Km ．
Car U leaves the city A at 12：am at an average speed of $90 \mathrm{~km} / \mathrm{h}$ towards B Car V leaves the city B at 12：00 am at an average speed of $45 \mathrm{Km} / \mathrm{h}$ towards A
a）At what time will $U$ arrive in $B$ ？
b）At what time will V arrive in A ？
c）At what time should they meet？Explain your answer on back of page．
d）Draw the lines representing the movements of each car．in the rectangular coordinates system below．
e）Use the graphic to determine at what time U and V cross on the road？
f）Let $u$ be the distance run by $U$ ，and t be the time corresponding to that distance． Let v be the distance run by V ，and t be the time corresponding to that distance． Write the equations of the movement of the two cars．
g）Solve the system and check that your answers match the picture．


北京景山学校－ 2010 http：／／beijingshanmaths．org

## III．Problem of economics optimization in a factory／Linear Programming．

An industrial plant is producing 2 different organic materials $X$ and $Y$ by means of 2 machines A and B．But that production is limited by environmental questions．
a．Through the machine A ，the material X is rejecting $5 \mathrm{~m}^{3}$ of $\mathrm{CO}_{2}$ per ton，and the material Y is rejecting $1 \mathrm{~m}^{3}$ of $\mathrm{CO}_{2}$ per ton．But altogether the machine A is not allowed to reject more than $150 \mathrm{~m}^{3}$ of $\mathrm{CO}_{2}$ per day．
b．Through the machine B ，the material X is rejecting $2 \mathrm{~m}^{3}$ of $\mathrm{CO}_{2}$ per ton，and the material Y is rejecting $1 \mathrm{~m}^{3}$ of $\mathrm{CO}_{2}$ per ton．But altogether the machine B is not allowed to reject more than $120 \mathrm{~m}^{\frac{2}{3}}$ of $\mathrm{CO}_{2}$ per day．
This plant is selling the products X at 320 Rmb per ton and Y at 180 Rmb per ton．
Let＇s $x$ and $y$ be the numbers of tons of these materials to be produced by the two machines A \＆B each day．

The question is how many tons of each material should be produced per day，to comply with the environmental constraints and make a maximum profit．

1．Explain（back page）why the constraints are represented by the following system：

$$
\left\{\begin{array}{l}
x \geq 0 ; y \geq 0 \\
5 x+y \leq 150 \\
2 x+y \leq 120
\end{array}\right.
$$

$$
\text { and Profit : } \mathrm{P}=320 \mathrm{x}+180 \mathrm{y} \text { (Rmb) }
$$

2．Graph the above inequalities below，and explain（back page）why the maximum profit would be made for the values of $x$ and $y$ corresponding to the vertex of the domain corresponding to the allowed production．


