Elementary functions and Numerical Sequences

Problem I - Around an island in the Southern Pacific Ocean, there are some seaweeds and some coral which develop together, but while the amount of seaweeds increases, the amount of corals is decreasing.
Eventually the corals will die away when there are too many seaweeds around.
Scientists have studied the evolution of both populations of these living creatures.
They found that the area covered by the seaweeds is increasing by $\mathbf{1 5 \%}$ every year, and that the area covered by the coral is decreasing of $\mathbf{1 5 0 0 0} \mathbf{~ m}^{2}$ every year.
On January $1^{\text {st }}$ of 2000 the area covered by the seaweeds was $\mathbf{1 5 0 , 0 0 0} \mathbf{m}^{2}$ and the area covered by the coral was of $\mathbf{3 5 0 , 0 0 0} \mathbf{~ m}^{2}$.
Let U_{n} represent the area covered by the seaweeds in the year $2000+n . U_{0}=150,000$.
Let V_{n} represent the area covered by the coral in the year $2000+\mathrm{n} . \mathrm{V}_{0}=350,000$.

1. Study of the sequence (Un) a. Calculate U_{1} and U_{2}	2pts
b. Write the relationship between $\mathrm{U}_{\mathrm{n}+1}$ and Un.	2pts
c. What is the nature of the sequence $\left(\mathrm{U}_{\mathrm{n}}\right)$?	2pts
d. Write the value of U_{n} directly in function of n .	2pts
e. What is the area covered by the seaweeds in 2010 ? (Use your pocket calculator)	2pts
2. Study of the sequence $\left(V_{n}\right)$: a. Calculate V_{1} and V_{2}	2pts
b. Write the relationship between $\mathrm{V}_{\mathrm{n}+1}$ and V_{n}.	2pts
c. What is the nature of the sequence $\left(\mathrm{V}_{\mathrm{n}}\right)$?	2pts
d. Write the value of V_{n} directly in function of n .	2pts
e. What is the area covered by the coral in 2010 ?	2pts

http://beijingshanmaths.org Name : Grade :
jiguanglaoshi@gmail.com Senior 1+•Final TEST Dec.14•60 min.•p.2/4
Problem II - Some scientists have described the evolution of a kind of small desert mice by the following sequence : U_{n} represents the number of thousands of mice at the year $2000+\mathrm{n}$. To survive the mice have to hide against the desert snake wich eat them up but they don't allways escape ...
$U_{0}=10$ and $U_{n+1}=f\left(U_{n}\right)$ with $f(x)=\frac{1}{4} x(12-x)$ for $0 \leq x \leq 12 \quad \therefore \quad U_{n+1}=\frac{1}{4} U_{n}\left(12-U_{n}\right)$

1. Draw carefully the graph of the function f.
2. Calculate U_{1}, U_{2}, U_{3}.
3. Show the construction of the first tems $U_{1}, U_{2}, U_{3} U_{4}, U_{5}, U_{6} \ldots$ on the graph
4. Is the sequence $\left(U_{n}\right)$ monotonous? (If yes say how). 2 2pts
5. Is the sequence $\left(U_{n}\right)$ bounded if yes give the boundaries)
6. Is the sequence $\left(U_{n}\right)$ converging towards a finite limit (if yes, give that limit).

http://beijingshanmaths.org Name : Grade : jiguanglaoshi@gmail.com Senior 1+•Final TEST Dec.14•60 min.•p.3/4

All calculations must shown below or on back of this page

Problem III : Let f be the function defined by $f(x)=\frac{x+8}{2 x+1}$ for $\mathrm{x} \geq 0$.
Study of the sequence $\left(v_{n}\right)$ defined by $u_{n+1}=f\left(u_{n}\right)=\frac{u_{n}+8}{2 u_{n}+1} ; \mathrm{n} \geq 0$ and $u_{0}=7$.

1. Graph the function f on $[0 ; 8]$ (next page)
2. Show the construction of the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$ (next page)
3. Find the coordinates of the intersection (Cf) with the first bisector $(\mathrm{y}=\mathrm{x})$
4. Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries ?)
Let $v_{n}=\frac{u_{n}-2}{u_{n}+2}$ for any $n>0$. Prove that the new sequence $\left(v_{n}\right)$ is geometric :

i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does-it seem to have a limit (if yes which one is it?)?
5. Let $v_{n}=\frac{u_{n}-2}{u_{n}+2}$ for any $n>0$. Prove that the new sequence $\left(v_{n}\right)$ is geometric :
i. Give its first term v_{0} and its reason q
ii. Give the expression of v_{n} directly in function of n .
iii. Deduct the limit of v_{n}.
iv. Find the expression of u_{n} in function of v_{n}
v. Find the limit of u_{n}
http://beijingshanmaths.org Name: Grade : $\ldots . .$. jiguanglaoshi@gmail.com Senior $1+$ • Final TEST Dec. 14 • 60 min. • p.4/4

