Definition & Construction of a Parabola (Part 1)

Let f be the function defined by : $f: x \mapsto ax^2$ (a $\neq 0$)

I- Algebraic properties:

1°) **Even** function: for any $x \in \mathbb{R}$,

$$f(-x)=f(x).$$

2°) Rate of growth *non constant*: $T_{[f,(x_1,x_2)]} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a(x_2 + x_1)$

$$T_{[f,(x_1,x_2)]} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a(x_2 + x_1)$$

3°) Sign of T = Sign of a on $[0; +\infty[$, and Sign of T = Sign of (-a) on $]-\infty; 0]$

 4°) Chart of the Variations of f:

a > 0		a < 0	
х	-∞ -1 0 1 +∞	х	-∞ -1 0 1 +∞
T	- II +	T	+ 1 -
f	+ [∞] a 0 a + [∞]	f	_∞ a 0 a∞

II- Geometric Properties:

1°) The curve has (Oy) as an axis of symmetry. For that reason the curve is called a **Parabola**.

2°) The Parabola is tangent to the (Ox) Axis in O.

3°) The Parabola passes through the point A(1; a).

 4°) If a > 0 the Parabola concavity is directed towars the positive y:

(as one can say the « the bowl can hold water »)

If a < 0 the Parabola concavity is directed towards the négative y:

(as one can say the « the bowl cannot hold water »)

5°) The Parabola intercepts the 1st bisector line (y = x) at point B(1/a; 1/a)

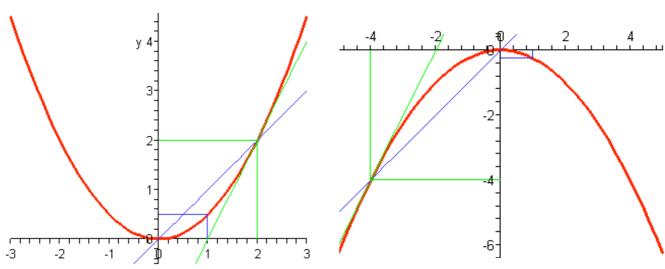
6°) On B the Parabola is tangent to the line joining B to the middle of the segment located under the tangent, which is the point of abscissa 1/2a

7°) By symmetry with respect to Oy we get the points A'(-1;a) and B'(-1/a; 1/a)

8°) If a is very small compared to the unity ($a \ll 1$), the parabola is widely opened, inversely if a >> 1 the parabola is very narrow around the axis of symmetry.

9°) The parabola contains absolutely no piece of a straight line.

10°) The branches spread indefinitely in the direction of the Oy axis.



Second degree functions (Part 2)

Second degree functions are in the general form: $f: x \mapsto ax^2 + bx + c$ with $a \neq 0$ This expression can take any of the following forms:

(P₁)
$$y = a x^{2}$$

(P₂) $y = a x^{2} + H$
(P₃) $y = a (x - L)^{2}$
(P₄) $y = a (x - L)^{2} + H$
(P₅) $y = a (x - x')(x - x'')$
(P₆) $y = a x^{2} + bx + c$ (trinomial)

- 1°) Transformation from (P_1) to (P_2) is a **Translation** defined by the vertical vector H_j (parallel to the (Oy) axis. (P_2) intercepts (Oy) in y = H. (H = #Hight *); L = #Length *)
- 2°) Transformation from (P_1) to (P_3) is a **Translation** defined by the horizontal vector L. \vec{i} (parallel to the (Ox) axis)
- 3°) Transformation from (P_1) to (P_4) is a **Translation** of vector $\vec{V} = L.\vec{i} + H.\vec{j}$

The Parabola (P_4) has a vertex in O'(L;H).

Let $\mathbf{X} = x - \mathbf{L}$ and $\mathbf{Y} = y - \mathbf{H}$ then $\mathbf{Y} = \mathbf{a} \ \mathbf{X}^2$ which means that (P_4) is Symmetrical whith respect of the axis defined by $\mathbf{x} = \mathbf{L}$ (parallel to (Oy))

 (P_4) is drawn in the system (O'X,O'Y) just like (P_1) in the system (Ox,Oy).

 4°) The Parabola (P₅) intercepts the axis (Ox) in x' and x'', its vertex is then at

$$S(L; H)$$
 of abscissa $L = \frac{x' + x''}{2} = -\frac{b}{2a}$ and ordinate $H = f(L)$

5°) To build the parabola (P_6) one can either:

a. use the form (P_4) by breaking the trinomial in that « canonic » form.

b. find the coordinates of the vertex $O'\{L=-b/2a; H=f(L)\}\$ then find the Ox and Oy intersection pts: on (Oy): (x=0; y=c) and (Ox) solutions of the équation $ax^2 + bx + c = 0$ (if any).

Example: let (P) be the Parabola defined by $\sqrt{y} = 1/4 (x-2)^2 + 3$ then L=2; H=3; Y = $\frac{1}{4}$ X²

