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The 10 FUNDAMENTAL THEOREMS of ARITHMETIC   

1. [ Linear Combination ] If d | a and d | b  then d | w = au + bv   (u ∈,  v ∈)  

d | a 
d | b

⎧
⎨
⎩

⎫
⎬
⎭
⇔ a = d.a’

b = d.b’
⎧
⎨
⎩

⎫
⎬
⎭
⇒ au + bv = d ′a u + d ′b v = d( ′a u + ′b v)⇒ d | (au + bv)  

 

2. If d | a and d | b and a =b.q + r (0 ≤ r < b) then d | b  and  d | r 

d | a 
    d | b
a = bq + r
(0 ≤ r < b)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⇒ r = a.1+ b.(−q){ }⇒ r  is a linear combination of a and b ⇒ d | r  
d | b

⎧
⎨
⎩

⎫
⎬
⎭

 

 

3. [EUCLID algorithm to find the GCD] The GCD of a  and b is the LAST NON ZERO REST of all Euclidian 

Divisions of a by b (rest r1) ; b by r1 (rest r2) ; r1 by  r2 (rest r3) , … with b > r1, >  r2  >…> rn  ≥ 0 

d | a 
     d | b
a = bq + r1
  0 ≤ r1 < b

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⇒

d | b 
       d | r1
b = r1q1 + r2
0 ≤ r2 < r1 < b

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

⇒

d | r1
d | r2

r1  = r2q2 + r3
0 ≤ r3 < r2 < r1 < b

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

⇒  ...⇒

d | rn−2

d | rn−1

              rn-2  = rn-1qn-1 + rn
0 ≤ rn < rn−1 < ...< r3 < r2 < r1 < b

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

⇒

d | rn−1

d | rn
              rn−1  = rnqn + 0
0 ≤ rn < rn−1 < ...< r3 < r2 < r1 < b

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

rn is the last Rest ≠ 0, then any common divisor d of a and b is a divisor of rn 

then if d = GCD(a;b) then d | rn  ∴ d ≤ rn  

But rn | rn-1  ⇒  rn | rn-1qn-1+ rn = rn-2 ⇒  {rn | rn-1 and rn | rn-2 } ⇒ rn | rn-2qn-2+ rn-1 = rn-3  ⇒ { rn | rn-2  and rn | rn-3 } ⇒ … ⇒  {rn | 

r1 and rn | b } ⇒{rn |b  and rn | a }. then  rn ≤ d because d was supposed to be the GCD of a and b , eventually we have :   

rn ≤ d  and d ≤ rn ⇒ d = rn. Hence the last non zero rest of the divisions is the GCD(a;b). 

 

4. [BÉZOUT fundamental theorem ]  GCD(a ; b) = 1 if (⇐ ), and only if (⇒ ) there are two Integers u and v such 
that au + bv = 1 
 

a. Demo of  the sufficient condition (⇐ ) : 

 IF au + bv =1 then any common divisor/factor d of a and b is a divisor/factor of au + bv =1, 

therefore if au + bv =1 then GCD(a;b) = 1 (because the only divisor of 1 is 1) 

 

b. Demo of  the necessary condition (⇒ ) :  

IF GCD(a ; b) = 1, there must be two integers u and v such that au + bv =1. 

Let’s consider the set E+ of all positive numbers in the form of au + bv. In that set, there is a smallest element :  m = 

au0 + bv0. (m > 0) .Then let’s prove that m is a divisor of both a and b (in that case m = 1) 

Let’s divide a by m : a = mq + r with 0 ≤ r < m. 

Then by replacing m by au0 + bv0 we get a = (au0 + bv0)q + r  

⇔  r = a(1 - u0 q) + b(-v0q). Hence r = aU + b V, then r is an element of the set E+, therefore r must be larger than m, 

but since we had the condition 0 ≤ r < m we must have r = 0. Therefore a = mq i.e. m \ a. 

In the same way we can prove that m \ b therefore m is a common divisor of a and b which implies that m = 1 hence 

au0 + bv0 = 1 
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5. GCD(a ; b) = d  if and only if d is a common divisor of a and b and there are 2 Integers u and v such that au + bv = d 

a. IF au + bv = d then any common divisor k of a and b is a divisor of au + bv =d 

therefore k ≤ d . If D is the greatest common divisor of a and b then D ≤ d 

and if d is a common divisor of a and b then d ≤ D therefore d = D. 

b.  If GCD(a;b) = d then a = d a’ and b = db’ with GCD(a’,b’) = 1 (see Th. 6) then from Bezout Theorem (#4) 

there are two intergers u and v such that a’u+b’v = 1. Then by multiplying by d : da’u + db’v = d ⇔  au + bv = d 

 

6. If GCD (a ; b) = d and a = da’ and b = db’ then GCD (a’;b’) = 1. 

Demo : If k is a common divisor of a’ and b’ then a’ =ka” and b’ =kb” (k ≥ 1) 

Then a = dka” and b = dk b” ⇒  dk is a common divisor of a & b ⇒  dk ≤ d ⇒  k =1 

 

7. [ GAUSS Fundamental theorem ] : If GCD(a ; b) = 1 and a | bc then a | c 

 GCD(a ;  b) =  1
a |  bc

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⇔ au + bv = 1

bc = ka
⎧
⎨
⎩

⎫
⎬
⎭
⇒ acu + bcv = c

bc = ka
⎧
⎨
⎩

⎫
⎬
⎭

                   ⇒ acu + kav = c⇒ a(cu + kv) = c⇔ a | c

 

 

8. If GCD (a ; b) = 1 and a | N and b | N then ab | N 

 
GCD(a;b) =  1

a | N
b | N

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇔

GCD(a;b) =  1
a | N
N = k2b

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒

GCD(a;b) =  1
a | k2b
N = k2b

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒

a | k 2

a | k2b
N = k2b

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒

k2 = ak3

a | k2b
N = k2b

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒ N = (ak3 )b = (ab)k3 ⇒ (ab) | N

 
 

9. If m = LCM (a;b) and d = GCD (a;b) then md = ab 

Let M be a common multiple of a and b then M = a.k1 and M = b.k2, ;  

a = d.a’ and b = d.b’ with GCD(a’;b’) = 1 then ak1 = bk2 ⇔  da’k1 = db’k2 

⇔  a’k1 = b’k2 but from Gauss Theorem a’ | k2 and b’ | k1 then k2 = a’a” and k1 =b’b” 

Therfore M = ab’b” = ba’a” ⇔  M=da’b’a”=da’b’b” (a”=b”), which means that any common multiple of a and b is a 

multiple of (da’b’). 

Reciprocally, any mutliple of da’b’ is a multiple of a = a’d and of b = b’d. 

Then all common multiple of a and b are in the form (a’b’d).k. 

Hence the Least Common Multiple of a and b is exactly (a’b’d).1 . Hence m = a’b’d ⇔  md = a’d b’d ⇔  md = ab. 

 

10. If  N is a Prime number and N | ab then N | a or N | b 

From the Gauss theorem again, we have N | ab and either GCD(N,b)= 1  then N | a, 

or N | b (and we may also have N | a). 
 


