1.

［ Linear Combination ］If $\boldsymbol{d} \mid \boldsymbol{a}$ and $\boldsymbol{d} \mid \boldsymbol{b}$ then $\boldsymbol{d} \mid \boldsymbol{w}=\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} v(u \in \mathbb{Z}, v \in \mathbb{Z})$

$$
\left.\left\{\begin{array}{c}
d \mid a \\
d \mid b
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
a=d \cdot a \\
b=d \cdot b^{\prime}
\end{array}\right\} \Rightarrow a u+b v=d a^{\prime} u+d b^{\prime} v=d\left(a^{\prime} u+b^{\prime} v\right) \Rightarrow d \right\rvert\,(a u+b v)
$$

2．If $\boldsymbol{d} \mid \boldsymbol{a}$ and $\boldsymbol{d} \mid \boldsymbol{b}$ and $\boldsymbol{a}=\boldsymbol{b} . \boldsymbol{q}+\boldsymbol{r}(\boldsymbol{0} \leq \boldsymbol{r}<\boldsymbol{b})$ then $\boldsymbol{d} \mid \boldsymbol{b}$ and $\boldsymbol{d} \mid \boldsymbol{r}$

$$
\left\{\begin{array}{c}
d \mid a \\
d \mid b \\
a=b q+r \\
(0 \leq r<b)
\end{array}\right\} \Rightarrow\{r=a .1+b .(-q)\} \Rightarrow r \text { is a linear combination of } \mathrm{a} \text { and } \mathrm{b} \Rightarrow\left\{\begin{array}{c}
d \mid r \\
d \mid b
\end{array}\right\}
$$

3．［EUCLID algorithm to find the GCD］The GCD of \boldsymbol{a} and \boldsymbol{b} is the LAST NON ZERO REST of all Euclidian Divisions of \boldsymbol{a} by \boldsymbol{b}（rest \boldsymbol{r}_{1} ）； \boldsymbol{b} by \boldsymbol{r}_{1}（rest \boldsymbol{r}_{2} ）； \boldsymbol{r}_{1} by $\boldsymbol{r}_{2}\left(\right.$ rest $\left.\boldsymbol{r}_{3}\right), \ldots$ with $\boldsymbol{b}>\boldsymbol{r}_{1},>\boldsymbol{r}_{2}>\ldots>\boldsymbol{r}_{n} \geq \boldsymbol{0}$

$$
\left\{\begin{array}{c}
d \mid a \\
d \mid b \\
a=b q+r_{1} \\
0 \leq r_{1}<b
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
d \mid b \\
d \mid r_{1} \\
b=r_{1} q_{1}+r_{2} \\
0 \leq r_{2}<r_{1}<b
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
d \mid r_{1} \\
d \mid r_{2} \\
r_{1}=r_{2} q_{2}+r_{3} \\
0 \leq r_{3}<r_{2}<r_{1}<b
\end{array}\right\} \Rightarrow \ldots \Rightarrow\left\{\begin{array}{c}
d \mid r_{n-2} \\
d \mid r_{n-1} \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} \\
0 \leq r_{n}<r_{n-1}<\ldots<r_{3}<r_{2}<r_{1}<b
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
d \mid r_{n-1} \\
d \mid r_{n} \\
r_{n-1}=r_{n} q_{n}+0 \\
0 \leq r_{n}<r_{n-1}<\ldots<r_{3}<r_{2}<r_{1}<b
\end{array}\right\}
$$ r_{n} is the last Rest $\neq 0$ ，then any common divisor d of a and b is a divisor of r_{n}

then if $d=G C D(a ; b)$ then $d \mid r_{n} \therefore d \leq r_{n}$
But $r_{n}\left|r_{n-1} \Rightarrow r_{n}\right| r_{n-1} q_{n-1}+r_{n}=r_{n-2} \Rightarrow\left\{r_{n} \mid r_{n-1}\right.$ and $\left.r_{n} \mid r_{n-2}\right\} \Rightarrow r_{n} \mid r_{n-2} q_{n-2}+r_{n-1}=r_{n-3} \Rightarrow\left\{r_{n} \mid r_{n-2}\right.$ and $\left.r_{n} \mid r_{n-3}\right\} \Rightarrow \ldots \Rightarrow\left\{r_{n} \mid\right.$
r_{1} and $\left.r_{n} \mid b\right\} \Rightarrow\left\{r_{n} \mid b\right.$ and $\left.r_{n} \mid a\right\}$ ．then $r_{n} \leq d$ because d was supposed to be the GCD of a and b ，eventually we have ：
$r_{n} \leq d$ and $d \leq r_{n} \Rightarrow d=r_{n}$ ．Hence the last non zero rest of the divisions is the $\mathbf{G C D}(\boldsymbol{a} ; \boldsymbol{b})$.

4．$\quad[B E ́ Z O U T$ fundamental theorem ］ $\operatorname{GCD}(a ; b)=1$ if (\Leftarrow) ，and only if (\Rightarrow) there are two Integers u and v such that $a u+b v=1$
a．Demo of the sufficient condition（ \Leftarrow ）：
IF $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\mathbf{1}$ then any common divisor／factor \boldsymbol{d} of \boldsymbol{a} and \boldsymbol{b} is a divisor／factor of $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\mathbf{1}$, therefore if $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\mathbf{1}$ then $\mathbf{G C D}(\mathbf{a} ; \mathbf{b})=\mathbf{1}$（because the only divisor of 1 is 1）
b．Demo of the necessary condition (\Rightarrow) ：
$\operatorname{IF} \operatorname{GCD}(\boldsymbol{a} ; \boldsymbol{b})=\mathbf{1}$ ，there must be two integers u and v such that $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\boldsymbol{1}$.
Let＇s consider the set E^{+}of all positive numbers in the form of $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}$ ．In that set，there is a smallest element ： $\boldsymbol{m}=$ $\boldsymbol{a} \boldsymbol{u}_{\boldsymbol{0}}+\boldsymbol{b} \boldsymbol{v}_{0} .(m>0)$ ．Then let＇s prove that \boldsymbol{m} is a divisor of both \boldsymbol{a} and \boldsymbol{b}（in that case $m=1$ ）

Let＇s divide a by $\boldsymbol{m}: \boldsymbol{a}=\boldsymbol{m} \boldsymbol{q}+\boldsymbol{r}$ with $\mathbf{0} \leq \boldsymbol{r}<\boldsymbol{m}$ ．
Then by replacing \boldsymbol{m} by $\boldsymbol{a} u_{0}+\boldsymbol{b} \boldsymbol{v}_{0}$ we get $a=\left(\boldsymbol{a} u_{0}+\boldsymbol{b} \boldsymbol{v}_{0}\right) \boldsymbol{q}+\boldsymbol{r}$
$\Leftrightarrow \boldsymbol{r}=\boldsymbol{a}\left(\mathbf{1}-\boldsymbol{u}_{0} \boldsymbol{q}\right)+\boldsymbol{b}\left(-\boldsymbol{v}_{0} \boldsymbol{q}\right)$ ．Hence $\boldsymbol{r}=\boldsymbol{a} \boldsymbol{U}+\boldsymbol{b} \boldsymbol{V}$ ，then \boldsymbol{r} is an element of the set E^{+}，therefore \boldsymbol{r} must be larger than \boldsymbol{m} ， but since we had the condition $\boldsymbol{0} \leq \boldsymbol{r}<\boldsymbol{m}$ we must have $\boldsymbol{r}=\boldsymbol{0}$ ．Therefore $\boldsymbol{a}=\boldsymbol{m} \boldsymbol{q}$ i．e． $\boldsymbol{m} \backslash \boldsymbol{a}$ ．
In the same way we can prove that $\boldsymbol{m} \backslash \boldsymbol{b}$ therefore \boldsymbol{m} is a common divisor of \boldsymbol{a} and \boldsymbol{b} which implies that $\boldsymbol{m}=\mathbf{1}$ hence $a u_{0}+b v_{0}=1$

5．$\quad \mathbf{G C D}(\boldsymbol{a} ; \boldsymbol{b})=\mathbf{d}$ if and only if \boldsymbol{d} is a common divisor of \boldsymbol{a} and \boldsymbol{b} and there are 2 Integers \boldsymbol{u} and \boldsymbol{v} such that $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\mathbf{d}$
a．IF $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\mathbf{d}$ then any common divisor \boldsymbol{k} of \boldsymbol{a} and \boldsymbol{b} is a divisor of $\boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\boldsymbol{d}$ therefore $\boldsymbol{k} \leq \boldsymbol{d}$ ．If \mathbf{D} is the greatest common divisor of a and b then $\boldsymbol{D} \leq \boldsymbol{d}$
and if \boldsymbol{d} is a common divisor of \boldsymbol{a} and \boldsymbol{b} then $\boldsymbol{d} \leq \boldsymbol{D}$ therefore $\boldsymbol{d}=\boldsymbol{D}$ ．
If $\mathbf{G C D}(\mathbf{a} ; \mathbf{b})=\mathbf{d}$ then $\boldsymbol{a}=\boldsymbol{d} \boldsymbol{a}$ ，and $\boldsymbol{b}=\boldsymbol{d} \boldsymbol{b}^{\prime}$ with $\mathbf{G C D}\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}\right)=\mathbf{1}$（see Th．6）then from Bezout Theorem（\＃4） there are two intergers \boldsymbol{u} and \boldsymbol{v} such that $\boldsymbol{a} \boldsymbol{u}^{\prime} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=1$ ．Then by multiplying by $\boldsymbol{d}: \boldsymbol{d a} \boldsymbol{a} \boldsymbol{u}+\boldsymbol{d} \boldsymbol{b} \boldsymbol{v}=\boldsymbol{d} \Leftrightarrow \boldsymbol{a} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{v}=\boldsymbol{d}$

6．If GCD $(\boldsymbol{a} ; \boldsymbol{b})=\boldsymbol{d}$ and $\boldsymbol{a}=\boldsymbol{d} \boldsymbol{a}^{\prime}$ and $\boldsymbol{b}=\boldsymbol{d} \boldsymbol{b}^{\prime}$ then $\mathbf{G C D}\left(\boldsymbol{a}^{\prime} ; \boldsymbol{b}^{\prime}\right)=\mathbf{1}$ ．
Demo ：If \boldsymbol{k} is a common divisor of \boldsymbol{a}^{\prime} and \boldsymbol{b}^{\prime} then $\boldsymbol{a} \boldsymbol{\prime}=\boldsymbol{k} \boldsymbol{a}$＂and $\boldsymbol{b}^{\prime}=\boldsymbol{k} \boldsymbol{b}$＂$(k \geq 1)$
Then $\boldsymbol{a}=\boldsymbol{d} \boldsymbol{k} \boldsymbol{a}$＂and $\mathbf{b}=\mathbf{d k} \mathbf{b} \boldsymbol{} \Rightarrow \boldsymbol{d} \boldsymbol{k}$ is a common divisor of $\boldsymbol{a} \& \mathbf{b} \Rightarrow \boldsymbol{d} \boldsymbol{k} \leq \boldsymbol{d} \Rightarrow \boldsymbol{k}=\boldsymbol{1}$

7．［GAUSS Fundamental theorem ］：If $\mathbf{G C D}(\boldsymbol{a} ; \boldsymbol{b})=\mathbf{1}$ and $\boldsymbol{a} \mid \boldsymbol{b} \boldsymbol{c}$ then $\boldsymbol{a} \mid \boldsymbol{c}$

$$
\begin{gathered}
\left\{\begin{array}{c}
G C D(a ; b)=1 \\
a \mid b c
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
a u+b v=1 \\
b c=k a
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
a c u+b c v=c \\
b c=k a
\end{array}\right\} \\
\Rightarrow a c u+k a v=c \Rightarrow a(c u+k v)=c \Leftrightarrow a \mid c
\end{gathered}
$$

8．If GCD $(a ; b)=1$ and $\boldsymbol{a} \mid \boldsymbol{N}$ and $\boldsymbol{b} \mid \boldsymbol{N}$ then $\boldsymbol{a} \boldsymbol{b} \mid \boldsymbol{N}$

$$
\left.\left\{\begin{array}{c}
G C D(a ; b)=1 \\
a \mid N \\
b \mid N
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
G C D(a ; b)=1 \\
a \mid N \\
N=k_{2} b
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
G C D(a ; b)=1 \\
a \mid k_{2} b \\
N=k_{2} b
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
a \mid k_{2} \\
a \mid k_{2} b \\
N=k_{2} b
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
k_{2}=a k_{3} \\
a \mid k_{2} b \\
N=k_{2} b
\end{array}\right\} \Rightarrow N=\left(a k_{3}\right) b=(a b) k_{3} \Rightarrow(a b) \right\rvert\, N
$$

9．If $\boldsymbol{m}=\mathbf{L C M}(\boldsymbol{a} ; \boldsymbol{b})$ and $\boldsymbol{d}=\mathbf{G C D}(\boldsymbol{a} ; \boldsymbol{b})$ then $\boldsymbol{m} \boldsymbol{d}=\boldsymbol{a} \boldsymbol{b}$
Let \boldsymbol{M} be a common multiple of \boldsymbol{a} and \boldsymbol{b} then $\boldsymbol{M}=\boldsymbol{a} . \boldsymbol{k}_{1}$ and $\boldsymbol{M}=\boldsymbol{b} . \boldsymbol{k}_{2}$ ，；
$a=d . a^{\prime}$ and $b=d . b^{\prime}$ with $\mathbf{G C D}\left(\mathbf{a}^{\prime} ; b^{\prime}\right)=1$ then $\boldsymbol{a} \boldsymbol{k}_{1}=b \boldsymbol{k}_{2} \Leftrightarrow d a^{\prime} \boldsymbol{k}_{1}=\boldsymbol{d} b^{\prime} \boldsymbol{k}_{2}$
$\Leftrightarrow a^{\prime} \boldsymbol{k}_{1}=b^{\prime} \boldsymbol{k}_{2}$ but from Gauss Theorem $a^{\prime} \mid \boldsymbol{k}_{2}$ and $\boldsymbol{b}^{\prime} \mid \boldsymbol{k}_{1}$ then $\boldsymbol{k}_{2}=a^{\prime} a^{\prime \prime}$ and $\boldsymbol{k}_{1}=b^{\prime} \boldsymbol{b}^{\prime}$
 multiple of（da＇b＇）．
Reciprocally，any mutliple of $\boldsymbol{d} \boldsymbol{a} \boldsymbol{\prime} \boldsymbol{b}$＇is a multiple of $\boldsymbol{a}=\boldsymbol{a} \boldsymbol{d}$ and of $\boldsymbol{b}=\boldsymbol{b} \boldsymbol{d}$ ．
Then all common multiple of \boldsymbol{a} and \boldsymbol{b} are in the form（ $\boldsymbol{a}^{\prime} \boldsymbol{b}^{\prime} \boldsymbol{d}$ ）． \boldsymbol{k} ．
Hence the Least Common Multiple of \boldsymbol{a} and \boldsymbol{b} is exactly $\left(\boldsymbol{a}^{\prime} \boldsymbol{b}^{\prime} \boldsymbol{d}\right)$ ． $\boldsymbol{1}$ ．Hence $\boldsymbol{m}=\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{d} \Leftrightarrow \boldsymbol{m} \boldsymbol{d}=\boldsymbol{a} \boldsymbol{d} \boldsymbol{b} \boldsymbol{b} \boldsymbol{d} \Leftrightarrow \boldsymbol{m} \boldsymbol{d}=\boldsymbol{a} \boldsymbol{b}$ ．

10．If \boldsymbol{N} is a Prime number and $\boldsymbol{N} \mid \boldsymbol{a b}$ then $\boldsymbol{N} \mid \boldsymbol{a}$ or $\boldsymbol{N} \mid \boldsymbol{b}$
From the Gauss theorem again，we have $\boldsymbol{N} \mid \boldsymbol{a b}$ and either $\boldsymbol{G C D}(\mathbf{N}, \boldsymbol{b})=\mathbf{1}$ then $\boldsymbol{N} \mid \boldsymbol{a}$ ， or $\boldsymbol{N} \mid \boldsymbol{b}$（and we may also have $\boldsymbol{N | a}$ ）．

