The Golden Number in Geometry

Problem I ：in a rectangle of sides x（length）and y（width）we want to divide it such that the square inscribed in the rectangle determines a new rectangle of which the sides are in the same ratio．
1）Find what should be the value of the ratio $r=\frac{x}{y}$ such that：$r=\frac{x}{y}=\frac{y}{x-y}$
Answer ：$r=\frac{x}{y}=\frac{y}{x-y}=\frac{1}{\frac{x}{y}-1}=\frac{1}{r-1} \Leftrightarrow r=\frac{1}{r-1} \Leftrightarrow r^{2}-r-1=0(r>0) \Leftrightarrow r=\frac{1+\sqrt{5}}{2}$
This number is called the Golden Number．It＇s Inverse $\frac{1}{r}=\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{2}$ is called the Golden section．
2）Construction of the Golden Rectangle ：
1．Rectangle Triangle $A B C$ is such that $A C=2 A B$ ．Therefore $B C=\sqrt{ } 5$ ．
2．From B draw a circle of radius $=B C$ which outs $A B$ in D ．
Therefore $A D=1+\sqrt{5}$
3．complete the picture by drawing the rectangle $A D E C$ and the square $A G F C$ ．
4．We check that the ratio $\frac{A D}{A C}=\frac{1+\sqrt{5}}{2}=r$

Problem II ：in an isosceles triangle of sides x（length）and y（width）we want to divide it such that the isosceles triangle inscribed in the triangle determines a new isosceles triangle of which the sides are in the same ratio．
Construction of the golden triangle（uses the same simple technique as above）
1．Rectangle Triangle $A B$ is such that
$A B=2 B J$ ．Therefore $A J=\sqrt{ } 5$ ．
2．From \mathcal{I} draw a circle of radius $=A$ which outs BJ in K．
Therefore $B K=1+\sqrt{5}$
3．From B draw a circle of radius $=B K$
4．Draw the perpendicular bisector of $A B$ ， which cuts the previous circle in C ．
5．Complete the picture by connecting $B C$ and $A C$ ．
6．The circle of center A and radius $A B$ cuts $B C$ in D ，such that the triangle $A B D$ isosceles in A ．
7．Check that the sides are in the golden ratio：

$$
\frac{A C}{A B}=\frac{1+\sqrt{5}}{2}=r \text { and } \frac{A D}{B D}=\frac{2}{\sqrt{5}-1}=r
$$

In this presentation the construction of the golden section $A F$ from the rectangle triangle $A B D$ with $A B=2 B D$ gives $A F=A E=A D-D E=\sqrt{5}-1$ ．（ F is the golden point on $A B$ ）．That＇s OK．
But then many students build the circle centered in F of radius $=\sqrt{5}-1$ and the circle centered in A of radius equal to $A B$ to find the point C ．
It is correct，but they did not prove that $B C=C F=\sqrt{5}-1$ which is necessary．
Others students used the intersection of the perpendicular bisector of BF with the circle centered in F of radius $=A F$ but they did not prove that $A C=2$ ．

The best solution was to build the intersection of the circle centered in A of radius $A B$ $=2$ and the circle centered in B of radius equal to $F A$ ．
Note：Some students have studied the special picture of the golden triangle and proved that the vertex of any isosceles golden triangle is equal to 36°（the base angles are 72° ．This is right and the golden ratio gives us a simple way to calculate the exact value or the sine and cosine of 18° ．In the picture page 1 we see that：

$$
\begin{aligned}
& \widehat{A C I}=\frac{1}{2} \widehat{A C B}=18^{\circ} \Rightarrow \sin 18^{\circ}=\frac{A I}{A C}=\frac{1}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{4} \\
& \text { and } \cos 18^{\circ}=\sqrt{1-\left(\sin 18^{\circ}\right)^{2}}=\sqrt{1-\frac{6-2 \sqrt{5}}{16}}=\frac{\sqrt{10+2 \sqrt{5}}}{4} \\
& \widehat{B A C}=90-18=72^{\circ} \Rightarrow \cos 72^{\circ}=\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
\end{aligned}
$$

